Lycée technique Mohammedia

Sciences de l'ingénieur

Module A.D.C.

Cours

Professeur

Année scolaire : 2019-2020

Classe: 1 STE

Prof : S.CHARI chari.123.ma

1

ENERGIES ELECTRIQUES

ALIMENTER

1

Présentation

Types d'énergie

Alimenter c'est fournir à un système l'énergie dont il a besoin pour fonctionner. Les types d'énergie : Energie électrique, énergie pneumatique ou hydraulique et énergie mécanique.

Energie primaire et secondaire

L'énergie primaire est l'énergie brute avant transformation;

L'électricité (énergie <u>secondaire</u>) est obtenue principalement à partir du charbon, de l'énergie hydraulique et de l'énergie nucléaire.

Energie électrique

L'énergie électrique se distingue des autres formes d'énergie :

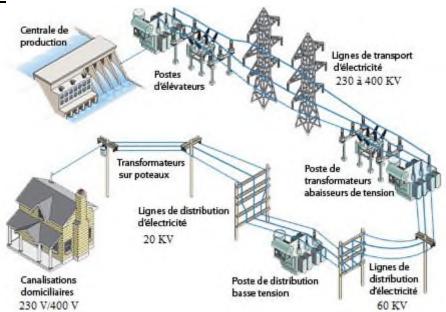
- Par la facilité de la transporter, de modifier ses caractéristiques (tension, courant) pour l'adapter aux nécessités du transport ou de l'emploi.
- Par **l'impossibilité de la <u>stocker</u>**, d'où la nécessité d'ajuster constamment la production à la consommation.

Différentes sources de production de l'énergie électrique

L'énergie électrique est produite dans des usines dites <u>centrales</u> électriques :

Centrales	Energie primaire (utilisée)
Hydrauliques	Chute de <mark>l'eau</mark>
Thermiques	Combustion charbon, pétrole
Nucléaires	<u>Uranium</u>
Éoliennes	<u>Vent</u>

Unité de mesure :


L'unité de mesure de la quantité d'énergie électrique est le $\frac{\text{wattheure}}{\text{wattheure}}$ (Wh). Pour une installation domestique on parle plus de kilowattheure (KWh).

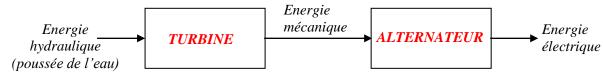
Exemple: Un four électrique d'une puissance de 1000 W, qui fonctionne 1 heure consomme 1000Wh ou1KWh.

2

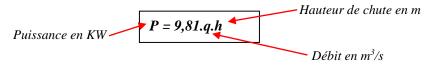
Réseau national

Topologie du réseau :

On appelle réseau électrique l'ensemble des infrastructures permettant d'<u>acheminer</u> l'énergie électrique des centrales de production, vers les consommateurs d'électricité.


A la sortie de la centrale, un premier poste de transformation (**poste** <u>élévateur</u>) augmente la tension à **400 KV**. Ceci permet de <u>minimiser</u> les pertes d'énergie pendant le transport.

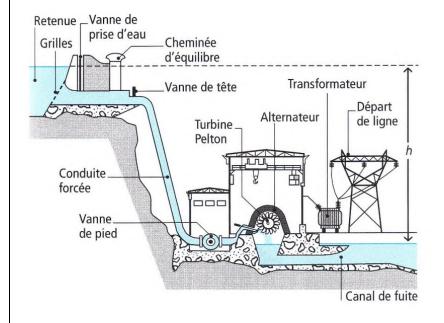
Près du point de livraison, un deuxième poste de transformation (**poste** <u>abaisseur</u>) fait l'opération inverse : il abaisse la tension pour la mettre aux normes du réseau domestique ou industriel.

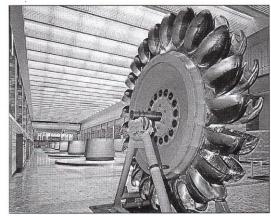

Pour satisfaire sa mission de service public, **O.N.E.E.** se doit de garantir **une électricité** de qualité à l'ensemble de ses **clients**, tous les jours de l'année et en tout point du territoire

Centrales hydrauliques:

Principe de fonctionnement

La puissance P que met en jeu une chute d'eau, d'une hauteur h et d'un débit q est donnée par :

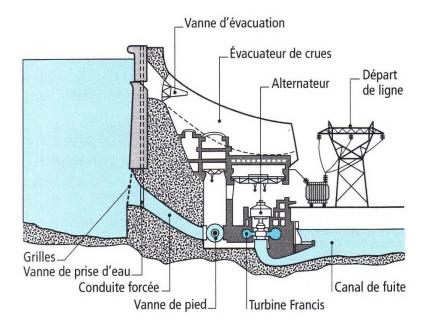



Différentes centrales hydrauliques

Centrale	Hauteur de chute	Turbine	Situation de la centrale
Haute chute	$h > 200 \ m$	Pelton	À quelques km de la prise d'eau
Moyenne chute	$30 \ m < h < 200 \ m$	Francis	Implantée dans le barrage
Basse chute ou fil de l'eau	h < 30 m	Kaplan	Implantée au fil de l'eau

Les hautes chutes : h > 200 m:

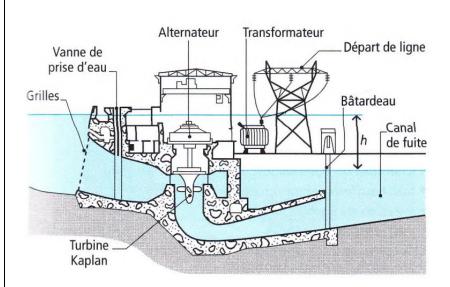
Elles sont situées en montagne. L'alimentation en eau des turbines s'effectue grâce à une conduite forcée. L'énergie produite par ces centrales sert généralement aux heures de pointe, du fait de la rapidité de sa mise en production. Les turbines utilisées sont de type <u>Pelton</u>.



Turbine Pelton

Les moyennes chutes : 30 m < h < 200 m :

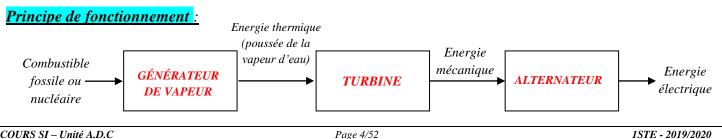
Elles sont situées en moyenne montagne. L'énergie produite par ces centrales sert à la régulation quotidienne ou hebdomadaire de la production. Elle utilise des turbines de types <u>Francis</u>.



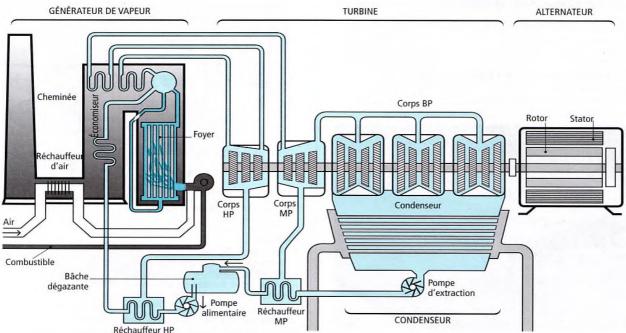
Turbine Francis

Les basses chutes : h< 30 m :

On les appelle aussi centrales au fil de l'eau. Elles sont caractérisées par une faible chute, et un débit important. Ces centrales fournissent de l'énergie en permanence. Elles utilisent des turbines en forme d'hélice, de type <u>Kaplan</u>.

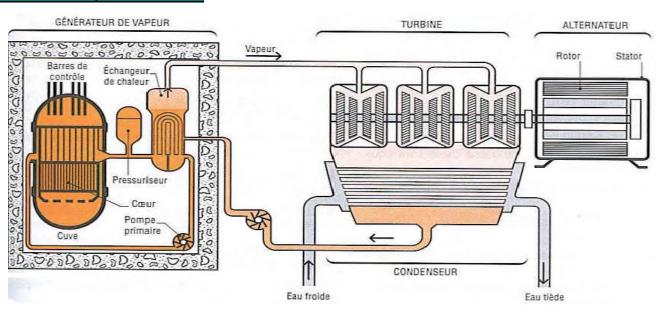


Turbine Kaplan


Les stations de pompages :

Ces centrales sont équipées de deux bassins. Aux heures de pointe, l'eau passe du bassin supérieur au bassin inférieur entraînant au passage en rotation une turbine couplée à un alternateur. Pendant les heures creuses, l'eau du bassin inférieur est pompée vers le bassin supérieur pour y être de nouveau stockée.

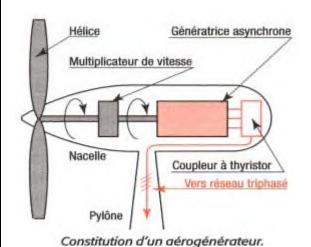
Centrales thermiques:


Centrales thermiques à flamme :

Une centrale thermique à flamme produit de l'électricité en <u>brûlant</u> un combustible (charbon, gaz ou fioul) dans une chaudière qui produit de <u>la vapeur</u>. Cette vapeur actionne une <u>turbine</u> qui entraîne un <u>alternateur</u>.

Centrales thermiques nucléaires :

A l'intérieur du réacteur, <u>l'uranium 235</u> est le siège d'une réaction nucléaire qui produit une grande quantité de <u>chaleur</u>. Cette chaleur est continuellement évacuée hors du réacteur vers un échangeur de chaleur grâce à un fluide dit caloporteur. L'échangeur transfère la chaleur qui vient du réacteur, à un circuit eau-vapeur analogue à celui d'une centrale thermique classique. La vapeur produite sous forte pression <u>entraîne</u> un groupe turbo alternateur, puis se condense dans un condenseur et est ensuite réinjectée dans l'échangeur.


Les centrales éoliennes :

Constituées de plusieurs générateurs éoliens situés sur des terrains de fort vent.

Principe de fonctionnement des éoliens :

L'énergie primaire utilisée est l'énergie cinétique du <u>vent</u>. Celle-ci sert à actionner les pales (hélice) d'un rotor récupérant de l'énergie <u>mécanique</u> en rotation.

Sur ce rotor est accouplée une génératrice (alternateur) qui délivre de l'énergie <u>électrique</u>. Elle est utilisée telle qu'elle ou est raccordée au réseau par l'intermédiaire d'un transformateur

3

Sources autonomes

<u>Energie solaire :</u>

Il existe deux types d'énergie solaire : le photovoltaïque et le solaire thermique.

Photovoltaïque :

L'effet photovoltaïque est simple dans son principe. Les panneaux solaires se composent de <u>photopiles</u> constituées de silicium, un matériau semi-conducteur qui abrite donc des électrons. Excités par les rayons du soleil, les électrons entrent en mouvement et produisent de <u>l'électricité</u>.

L'énergie solaire photovoltaïque est surtout utilisée pour la fourniture d'électricité dans les sites isolés : électrification rurale et pompage de l'eau (50%), télécommunications et signalisation (40%), applications domestiques (10%).

Solaire thermique:

Le solaire thermique ne produit pas d'électricité mais de <u>la chaleur</u>. Celle-ci permet d'obtenir des **températures** de l'ordre de 450°C. Cette température permet d'évaporer l'eau qui fait tourner des turbines.

Groupe électrogène :

Le fonctionnement d'un groupe électrogène se base sur le principe suivant lequel l'énergie mécanique est produite par un moteur à essence ou moteur diesel (moteur thermique) qui entraîne un alternateur produisant de l'électricité. Ces groupes sont généralement utilisés comme alimentation de secours, alimentation électrique ininterruptible dans les locaux exigeant une continuité de service tel que les hôpitaux, les centres informatiques

Piles et accumulateurs :

Les accumulateurs et les piles sont des systèmes <u>électrochimiques</u> servant à stocker de l'énergie. Ceux-ci la restituent sous forme d'énergie électrique.

Piles :

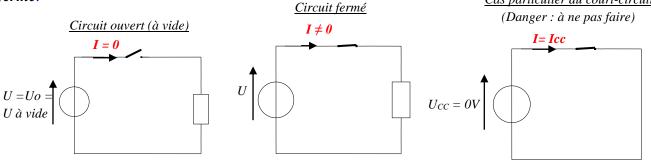
Une pile est constituée de deux électrodes de natures différentes plongeant dans une solution conductrice, appelée <u>électrolyte</u>.

Dans une pile, une transformation chimique se produit : une partie de l'énergie chimique des réactifs est transférée au circuit sous forme d'énergie électrique.

Lorsque la pile fonctionne, des réactifs sont consommés : la pile s'<u>use</u>.

Piles salines	Piles alcalines	Piles au Lithium
Bon marché	Grande capacité (Certaines sont rechargeables)	Calculatrices, PDA, montres Grande capacité massique Coût élevé
Comment of the second of the s	BURACELL BUR	CR2032 + 3V

Accumulateur :

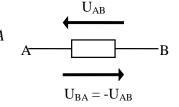

L'accumulateur est basé sur un système électrochimique réversible. Il est <u>rechargeable</u> par opposition à une **pile** qui ne l'est pas. Le terme **batterie** est alors utilisé pour caractériser un **assemblage** de cellules élémentaires (en général rechargeables).

Accumulateurs	Accumulateur	Accumulateur	Accumulateur
Ni-Cd	Ni-Mh	Lithium-Ion	Plomb
Avantage:	Avantage:	Avantage:	Avantage:
Les plus courants,	Plus grande capacité	La plus grande capacité,	Grande capacité
charge facile, acceptent	(+40%), pas d'effet	Meilleure gestion du	volumique, fort courant
une surcharge,	mémoire	niveau de charge	de décharge, très faible
Possibilité de charge	Inconvénient :	Inconvénient :	résistance interne
rapide	Charge plus délicate	Coût élevé	Inconvénient :
Inconvénient :	Courant de décharge	Chargeur spécifique	Très lourds
Problème d'effet	plus limité		Electrolyte liquide
mémoire, pollution du			(acide)
Cadmium			
4500mAh Nicd 120 4500mAh	Panasonic Panasonic	Pease refer to manual before using bettery. Verifies consider is guided dudisiption used to dudisiption used of duffies pile. References as model of emploi asent dudifies to betterie. Consiste on manual arties de luciar a betriei. Per favor les all manual arties de luciar a betriei. Res favor en de manual arties de luciar a betriei. Res favor en de manual arties de luciar a la Res favor en de manual arties de luciar a betriei. ELEMANSOVU 12000 mah. SM: A.A.42C.2006.84-8-165	VARTA E24 RMANIN 6307
Tension d'un élément	Tension d'un élément	Tension d'un élément	Tension d'un élément
1,2V	1,2V	3,6V	2V

1 Courant électrique

Un courant électrique (**déplacement** de porteur des charges) ne peut s'établir que dans un circuit électrique **fermé**.

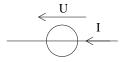
Cas particulier du court-circuit


Par convention, on dit que le courant sort de la borne (+) du générateur ; il est opposé au sens réel du déplacement des **électrons**.

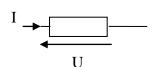
L'intensité du courant s'exprime en <u>ampère</u> (A). Elle est une grandeur algébrique, elle se mesure à l'aide d'un <u>ampèremètre</u> branché en <u>série</u> dans le circuit.

2 Différence de potentiel (d.d.p). Tension

Soit un dipôle AB:


La tension entre le point A et le point B (ou la différence de potentiel entre A et B) est égale au potentiel électrique du point A moins le potentiel électrique du point B.

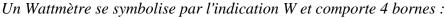
La tension s'exprime en <u>volt</u> (V). Elle est une grandeur algébrique, on la mesure à l'aide d'un <u>voltmètre</u> monté en <u>parallèle</u>.

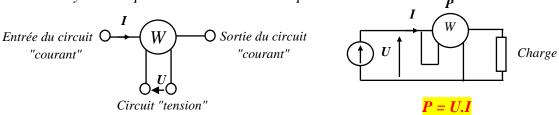

Convention d'orientation des dipôles :

Convention générateur

U et I sont de même sens.

Les grandeurs tension et courant sont toutes deux considérées positives Convention récepteur

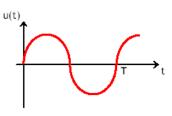



U et I sont de sens contraire

Puissance électrique

En physique, une puissance représente une quantité d'énergie par unité de temps. Ainsi, un système qui fournit beaucoup de puissance fournit beaucoup d'énergie (Joules) par secondes, on appelle ça des Watt (IW = 1 J/s).

Pour mesurer la puissance consommée ou fournie par un dipôle, il n'existe qu'un seul type d'appareil : <u>le Wattmètre</u>.



Fréquence

Pour un signal périodique u(t), c'est le nombre de <u>périodes</u> par seconde.

L'unité de la fréquence est l'**hertz** (Hz). De ce fait la relation qui lie la fréquence à la période est : f = 1/T

T: période en seconde (s). C'est le temps après lequel le signal se répète.

5

Résistances

Loi d'ohm pour une résistance en convention récepteur :

R : résistance du résistor (en Ohm Ω)

(Ceci veut dire qu'aux bornes du résistor R, il y a la tension U et qu'il est traversé par le courant I).

Expression de la résistance :

$$R = \rho \frac{L}{s}$$
 avec

- L en m (mètre)
- $s en m^2$
- ρ résistivité du résistor en Ω m

Avec <u>la résistivité</u> dépend de la température par la relation : $\rho_t = \rho_0 (1 + at)$

 A_{VeC} : ho_t : résistivité à la température t et ho_0 résistivité à la température 0°C

a : le coefficient de température du résistor

Soit pour une résistance : $R_t = R_0 (1 + a t)$

Applications numériques :

1) Une rallonge électrique de 5m est composée de 2 conducteurs de cuivre de section égale à 0,75 mm². Quelle est la valeur de sa résistance ($\rho = 1,6$. $10^{-8} \Omega m$):

$$R = 2$$
. $\rho L/s = 2 \times 1.6$. $10^{-8} \times 5/0.75.10^{-6} = 0.214 \Omega$.

2) Un radiateur électrique porte les indications suivantes : 230V, 1500W. L'élément chauffant a une longueur de 2m et une section de $0.8mm^2$.

Calculer la valeur de l'intensité du courant consommée :

$$I = P/U = 1500/230 = 6,52 A.$$

Calculer la valeur de la résistance de l'élément chauffant :

$$R = U^2/P = 230^2/1500 = 35,26 \Omega$$
.

Calculer la valeur de la résistivité de l'élément chauffant :

$$\rho = R.s/L = 35.26 \times 0.8.10^{-6}/2 = 1,41.10^{-5} \Omega m$$

Effet joule

Tout conducteur électrique d'une certaine résistance (R) parcouru par le passage du courant (I) s'échauffe. Il se produit un dégagement de chaleur. Le phénomène est général et il constitue l'effet Joule :

• Puissance dissipée en chaleur : $P = R \times I^2$

$$W \Omega A$$

• Energie dissipée en chaleur : $W = R \times I^2 \times t$ $J \quad \Omega \quad A \quad s$

Remarque :

- Si le temps est en heure (h), alors l'unité d'énergie est le Wh soit 1 Wh = 3600 J
- Exemple : le compteur électrique chez un abonné mesure l'énergie en KWh = 3600 KJ

Conséquences technologique

- Avantages:
 - L'effet joule est mis à profit pour le fonctionnement des Appareils fournissant de la chaleur : four, radiateur ...
 - Effet utilisé dans les : fusibles, disjoncteur thermique...

× 128 W

- Inconvénients :
 - Pertes d'énergie dans le transport de l'électricité.
 - Dégagement de chaleur dans les appareils.
 - Cas particulier pour un **résistor** : Toute la puissance qu'il consomme est transformée en chaleur.

Applications numériques : (cocher pour dire oui)

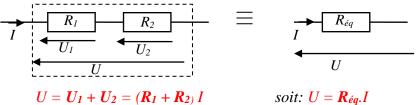
1) L'effet joule est-il utile pour les appareils suivants :

Aspirateur	Tube fluorescent	Lampe halogène	X Grille-pain
2) Un moteur a une résiss	tance interne de 2 $arOmega$. IL est tra	versé par un courant de 8A	lorsqu'il fonctionne sous
190V. Quelle est la valeu	r de la puissance perdue en ch	naleur :	

3) Une résistance de chauffage électrique a une puissance de 1500W pour une valeur d'intensité du courant de 6,5A. Déterminer la valeur de la résistance de l'élément chauffant :

$$R = P/I^2 = 1500/6.5^2 = 35.50 \Omega$$

16 W

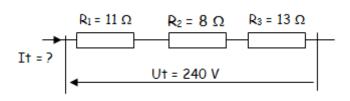

4) Pour un résistor au carbone codé $R=470\Omega$, le constructeur indique une puissance maximale de 2 W. Quelle est la valeur maximale de l'intensité du courant pour ce composant ?

Association de résistances

Association série :

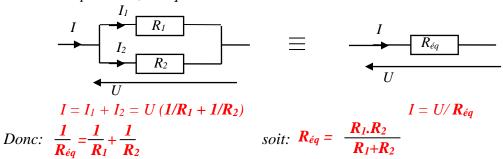
Des dipôles sont en série lorsqu'ils sont traversés par le même **courant** et partagent une même connexion qui ne soit pas un nœud de courant.

380 W

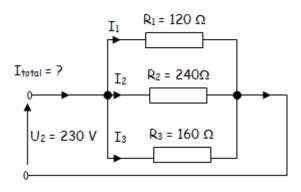

72 200 W

Donc: $R_{\acute{e}q} = R_1 + R_2$ En série, les résistances s'additionnent.

Applications numériques :


Calculer les valeurs suivantes :

$$R_{eq} = R_1 + R_2 + R_3 = 11 + 8 + 13 = 32 \Omega$$
 $It = Ut/R_{eq} = 240/32 = 7.5 A$
 $U_{RI} = R_1$. $It = 11 \times 7.5 = 82.5 \text{ V}$
 $U_{R2} = R_2$. $It = 8 \times 7.5 = 60 \text{ V}$
 $U_{R3} = R_3$. $It = 13 \times 7.5 = 97.5 \text{ V}$



<u> Association parallèle :</u>

Des dipôles sont en parallèle, lorsqu'ils sont soumis à la même **tension** et sont connectés bornes à bornes.

Applications numériques :

1) Calculer la valeur de la résistance Rea:

$$1/R_{eq} = 1/R_1 + 1/R_2 + 1/R_3 = 1/120 + 1/240 + 1/160 = 3/160$$

 $\Rightarrow R_{eq} = 160/3 = 53.33 \Omega$

2) Calculer la valeur de l'intensité du courant I_{total} :

$$I_{total} = U_2 / R_{eq} = 230/53.33 = 4.30 A.$$

3) Calculer la valeur de l'intensité du courant I_1 :

$$I_1 = U_2/R_1 = 230/120 = 1.91 A.$$

4) Calculer la valeur de l'intensité du courant I₂ :

$$I_2 = U_2/R_2 = 230/240 = 0.95 A.$$

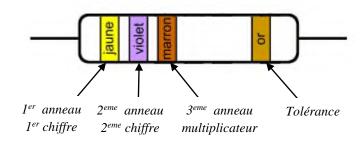
5) Calculer la valeur de l'intensité du courant I₃:

$$I_3 = U_2/R_3 = 230/160 = 1.43 A.$$

Données techniques des résistances

Les résistances sont les composants les plus utilisés dans les circuits; on en trouve de nombreux types, différents par leur structure, leur forme, leurs caractéristiques électriques selon la technique de fabrication adoptée et l'emploi auquel elles sont destinées. Les résistances peuvent être <u>fixes</u> ou <u>réglables</u>.

Résistances fixes


Ces résistances possèdent une valeur déterminée et se présentent sous trois types : aggloméré, à couche et bobiné. La valeur de la résistance nominale en ohm est indiquée en clair, ou avec le code des couleurs sur le composant. La tolérance c'est la fourchette des valeurs extrêmes entre lesquelles le constructeur garanti la valeur réelle.

Ses caractéristiques :

Sa résistance: elle est donnée par le code des couleurs.

Marquage d'une résistance

Exemple:

Couleurs: jaune - violet - marron - Or

La valeur de la résistance est : La valeur réelle est comprise entre :

COURS SI – Unité A.D.C Page 11/52 1STE - 2019/2020

Code des couleurs

Couleur	1er anneau 1er chiffre	2ème anneau 2ème chiffre	3ème anneau multiplicateur	Tolérance	
Noir	0	0	x 1		
Marron	1	1	x 10	+ ou - 1 %	
Rouge	2	2	x 100	+ ou - 2 %	
Orange	3	3	x 1 000		
Jaune	4	4	x 10 000		
Vert	5	5	x 100 000	+ ou - 0,5 %	
Bleu	6	6	x 1 000 000	+ ou - 0,25 %	
Violet	7	7	x 10 000 000	+ ou - 0,10 %	
Gris	8	8		+ ou - 0,05 %	
Blanc	9	9			
Or			x 0,1	+ ou - 5 %	
Argent			x 0,01	+ ou - 10 %	

<u>Sa tolérance</u>: pourcentage en plus ou en moins autour de sa valeur nominale (limites dans lesquelles se trouve la valeur mesurée),

Il existe des séries normalisées pour chaque précision voulue.

La série E_6 qui est la série de valeur nominale à 20%.

La série E_{12} qui représente les valeurs d'une série à 10%.

La série E_{24} qui est la série à 5%.

E_6	10				15				22				33				47				68			
E_{12}	10		12		15		18		22		27		33		39		47		56		68		82	
E_{24}	10	11	12	13	15	16	18	20	22	24	27	30	33	36	39	43	47	51	56	62	68	75	82	91

<u>Sa puissance</u>: c'est la puissance que l'élément peut **dissiper** d'une façon continue sans risque de détérioration.

On trouve les puissances suivantes : 1/8W, 1/4W, 1/2W, 1W, 2W, 3W et 4W dont les dimensions varient proportionnellement.

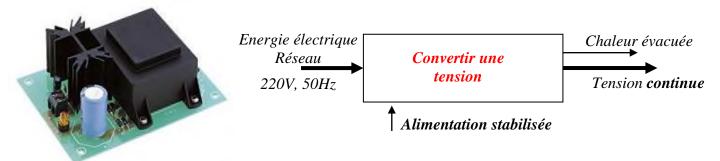
Résistances réglables :

Potentiomètres

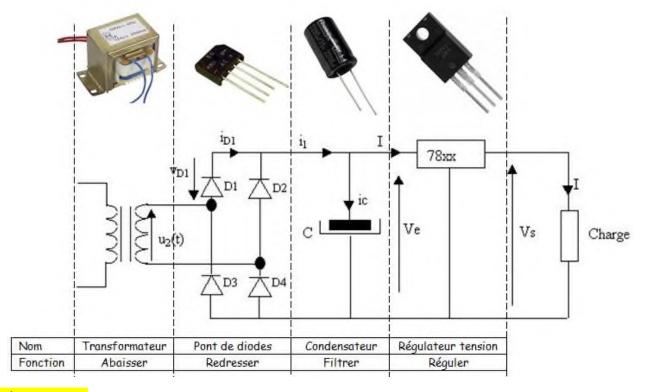
Les potentiomètres sont identiques, dans leur principe, aux ajustables, mais ils sont nettement plus volumineux et munis d'axe, sur lequel on peut au besoin adapter un bouton de réglage.

Résistances ajustables

On appelle ajustables ou potentiomètres ajustables des résistances dont la valeur est variable et peut être ajustée par l'utilisateur.


Ces résistances se présentent sous la forme d'un petit boîtier muni de trois pattes et d'un curseur rotatif, à souder sur le circuit imprimé. Il existe une grande variété de modèles, à piste de carbone ou à piste cermet, capotés ou non, horizontaux (pour un montage "couché") ou verticaux (montage "debout").

Elles s'ajustent en tournant, à l'aide d'un tournevis, le curseur central.



Présentation :

Les alimentations stabilisées sont utilisées pour fournir une **tension continue**. On en trouve pratiquement dans tous les appareils électroniques. (Audio, vidéo, ordinateur, etc....)


Schéma de principe :

Fonctionnement :

Fonction abaisser la tension

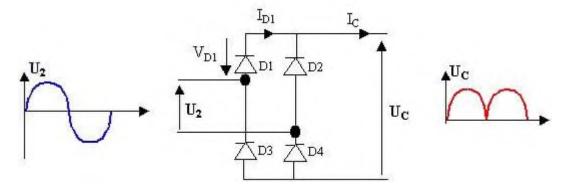
Cette fonction est réalisée par un transformateur. Il permet de diminuer l'amplitude de la tension secteur.

Rapport de transformation

Un transformateur est caractérisé par son rapport de transformation. Ce rapport est fonction du nombre de spires des enroulements primaire et secondaire :

$m = U_{20} / U_1 = I_1 / I_2 = N_2 / N_1$

Avec: U_1 : tension primaire


 U_{20} : tension à vide secondaire

 N_1 : nombre de spires primaires N_2 : nombre de spires secondaires

Puissance apparente d'un transformateur

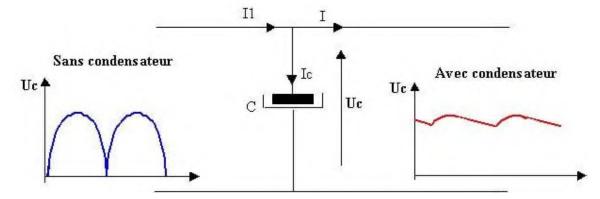
Fonction redresser la tension

Cette fonction est réalisée par un pont de diode. L'opération consiste à redresser l'alternance négative. On parle de tension continue redressée

Alternance positive

La tension $U_2(t)$ est positive, les diodes D1 et D4 se mettent à conduire. Les diodes D2 et D3 sont bloquées car la tension à leurs bornes est négative.

- D1 et D4 passantes
- D2 et D3 bloquées


Alternance négative

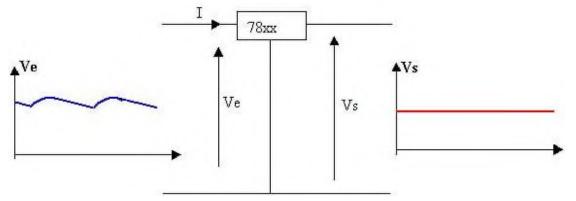
La tension $U_2(t)$ est négative, les diodes D2 et D3 se mettent à conduire. Les diodes D1 et D4 se bloquent car la tension à leurs bornes est négative.

- D2 et D3 passantes
- D1 et D4 bloquées

Fonction filtrer la tension

Après redressement, la tension de sortie aux bornes du pont redresseur est loin d'être continue. Le filtrage a pour but de transformer cette tension **redressée** en une tension **continue** légèrement ondulée. L'élément utilisé pour réaliser cette fonction est <u>le condensateur</u>

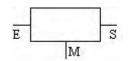
Loi électrique du condensateur


Charge électrique Q: Q = C. U = I. t ou $\Delta Q = C$. $\Delta U = I \Delta t$

- Q : charge électrique s'exprime en Coulombs
- C: capacité en Farad
- *U* : *d.d.p.* entre armature en Volt

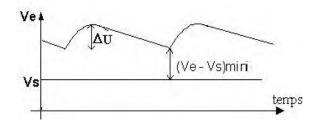
COURS SI – Unité A.D.C Page 14/52 ISTE - 2019/2020

Fonction réguler la tension


Malgré le filtrage, la tension aux bornes du condensateur n'est pas parfaitement continue, elle présente une légère <u>ondulation</u>. Pour obtenir une tension parfaitement continue, on utilise un <u>régulateur de tension</u>.

Caractéristique du régulateur

Un régulateur de tension possède trois bornes :


- Une entrée E recevant la tension redressée filtrée.
- Une sortie S qui **délivre** une tension très précise à la charge à alimenter.
- Une masse M reliée à la polarité **négative** de la tension redressée filtrée.

Fonctionnement du régulateur

La tension d'entrée du régulateur doit être suffisamment **grande** afin de maintenir Vs **constante**.

Les constructeurs donnent une tension d'entrée minimum à respecter afin d'assurer le fonctionnement correct du régulateur.

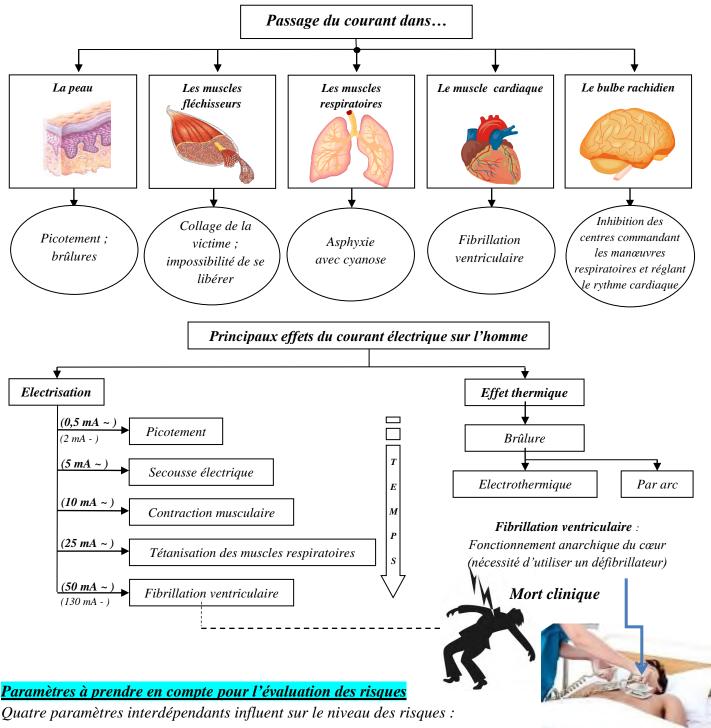
Aspect énergétique

- Puissance absorbée par le montage : Pa = Ve.I.
- Puissance fournie à la charge : Pu = Vs.I.
- Puissance perdue par effet joule : Pp = (Ve Vs) I.
- Le rendement du montage est donc : $\eta = Pu/Pa = Vs/Ve$.

Remarques

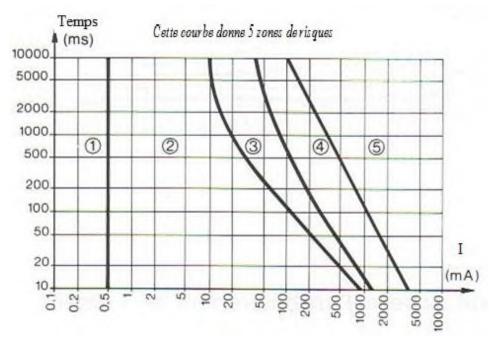
Pour obtenir un rendement convenable, la valeur de la tension d'entrée Ve doit être la plus près possible de Vs. Mais la tension (Ve - Vs) ne peut descendre en dessous d'une valeur minimale (valeur imposée par le régulateur, de l'ordre de 2 à 3 Volts).

Donc, la tension d'entrée non régulée Ve ne devra jamais être inférieure à (Vs + (Ve - Vs) mini) sinon la tension de sortie ne sera plus constante.

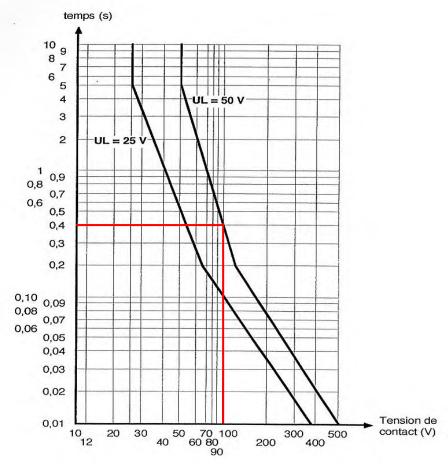

1 Protection des personnes

L'électricité ne sent pas, ne se voit pas et ne s'entend pas, ce qui la rend **très dangereuse** pour les utilisateurs. En effet, la mauvaise utilisation de l'électricité peut entraîner **des accidents** plus ou moins graves.

Effets physiologiques du courant électrique


Effet du courant sur le corps

Les effets et dommages provoqués dépendent du trajet du courant électrique dans le corps humain. Certains organes souffrent plus fortement des chocs électriques.


• I_c : courant qui circule dans le corps humain,

- U_c : tension appliquée au corps,
- R: résistance du corps,
- t: temps de passage du courant dans le corps.

- **Zone 1** : Courant inférieur au seuil de perception (0,5 mA).
- Zone 2 : Contractures musculaires (tétanisation). Bien que semblant sans risques, ces effets du courant peuvent provoquer une chute de la personne avec toutes les conséquences que cette chute peut avoir.
- **Zone 3**: Paralysie respiratoire. Sans secours rapides (respiration artificielle) l'accidenté risque de mourir parasphyxie.
- **Zone 4** : Possibilité de fibrillation ventriculaire inférieure à 50 %.
- **Zone 5**: Possibilité de fibrillation ventriculaire supérieure à 50%. La fibrillation ventriculaire, c'est la mort certaine en l'absence de secours adaptés et immédiats.

Relation entre le temps de passage du courant de choc dans le corps humain et la tension de contact

Selon le type de local, la norme NFC 15-100 précise, pour une tension d'alimentation en courant alternatif, deux valeurs de tensions limites conventionnelles de sécurité U_L :

- $U_L = 25 V$ pour les locaux mouillés,
- $U_L = 50 \text{ V pour les locaux secs.}$

Ces tensions, non dangereuses dans des environnements précis, définissent des courbes où les risques sont contrôlés en fonction du temps de passage du courant dans le corps.

Applications numériques

Lors d'un défaut dans un **local sec** ($U_L = 50 \text{ V}$), si la tension de contact vaut 100 V, le dispositif de protection doit couper le circuit en moins de : 0.4 s

Contacts directs

Qu'appelle-t-on un contact direct?

C'est le contact d'une personne avec une partie d'un équipement ou d'une installation normalement sous tension.

Moyens de protection

Les dispositions de protection contre les risques de contacts directs ont pour but d'assurer la mise hors de portée de **pièces nues** sous tension accessibles aux travailleurs.

La protection peut être obtenue par l'un des trois moyens suivants :

- L'isolation des parties actives du matériel électrique (gaine, cache bornes, etc.).
- La protection au moyen d'enveloppes et de barrières (coffrets, tableaux, etc.) qui permettent de rendre le matériel électrique inaccessible.
- Mise hors de portée, par éloignement : C'est le cas des lignes aériennes à haute tension et basse tension.

Contacts indirects

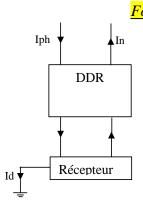
Qu'appelle-t-on un contact indirect?

C'est le contact d'une personne avec une masse métallique mise accidentellement sous tension par défaut d'isolement. Ce type de contact est très dangereux car, contrairement au contact direct, il n'est pas lié à l'imprudence ou à la maladresse de l'utilisateur.

Différents moyens de protection

<u>Utilisation de la Très Basse Tension (TBT)</u>

La protection est assurée aussi bien contre les contacts directs qu'indirects lorsque la tension ne dépasse pas celle donnée dans le tableau. Les installations en TBT doivent être alimentées à partir de sources de sécurité, c'est à dire parfaitement isolées des installations de tension supérieure (exemple : transformateurs d'isolement, piles, accumulateurs, ...)


Tensio	on limite	Exemples d'utilisation			
En alternatif	En continu	Exemples a unusunon			
50 V	120 V	Locaux d'habitation, bureaux, locaux non mouillés			
25 V	25 V 50 V Locaux mouillés, chantier				
12 V	25 V	Piscines, volume dans salle de bain			

Association de la mise à la terre avec des dispositifs de coupure automatique de l'alimentation Dans le cas d'installations alimentées directement en BT par Lydec (régime TT), on utilise un dispositif à coupure automatique de l'alimentation en cas de défaut : disjoncteur ou interrupteur à courant différentiel résiduel (DDR).

Disjoncteur différentiel à courant résiduel (D.D.R.)

Le disjoncteur différentiel magnéto thermique est aussi appelé Dispositif Différentiel à courant Résiduel (DDR), qui a pour rôle d'assurer :

- La protection des circuits contre les courants de défauts de surcharge et de court-circuit (fonction disjoncteur magnéto thermique).
- La protection des personnes contre les contacts indirects, fuite de courant à la terre (fonction différentielle).

Fonctionnement

- Pas de défaut : Id = 0
- \triangleright Iph = In
- ► Le DDR ne déclenche pas.
- Défaut : Id ≠ 0 ➤ Iph > In
 ➤ Le DDR déclenche si le courant de défaut est supérieur à sa sensibilité I∆n.

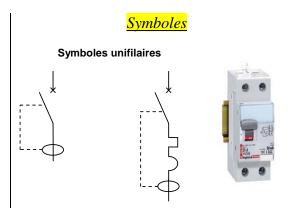


Tableau : Sensibilité DDR / Résistance maxi prise de terre

	Valeur de DDR	Résistance maxi de la prise de terre pour une U_L de 25 V	Résistance maxi de la prise de terre pour une U_L de 50 V
Basse	1000 mA	25 Ω	50Ω
sensibilité	650 mA	38 Ω	76Ω
Monoma	500 mA	50 Ω	100Ω
Moyenne sensibilité	300 mA	83 Ω	166 Ω
sensibilite	100 mA	250 Ω	$500~\Omega$
Haute	30 mA	830 Ω	1660 Ω
sensibilité	10 mA	2490 Ω	$4980~\Omega$

<u>Remarque:</u>

En fait le dispositif déclenche sur une plage, c'est à dire qu'il est susceptible de fonctionner entre $I\Delta n/2$ et $I\Delta n$.

<mark>Règles à respecter</mark> :

- Le neutre de l'installation doit être relié à la terre. C'est le travail de Lydec, quand le poste de transformation n'appartient pas à l'utilisateur (domestique, petite industrie...)
- Interconnecter les masses et les relier à une prise de terre différente de la prise de terre du neutre. C'est à la charge de l'utilisateur.
- *Mettre en place un dispositif différentiel à courant résiduel (DDR) de calibre :*

Avec:

- U_L : Tension limite de sécurité du local.
- $I\Delta n$: Calibre du DDR (multiple de 3 ou de 1).
- R_A : Résistance de terre de l'installation.

C'est à la charge de l'utilisateur.

2 Protection des biens

Cette fonction va concerner les équipements électriques eux-mêmes. En effet, un incident électrique peut les amener à la destruction (par un échauffement excessif par exemple), au pire à un incendie voire une explosion. Les protections sont nécessaires pour conserver les installations en état de fonctionnement et pour assurer la continuité d'alimentation des circuits non concernés par un défaut.

Défauts et dangers sur les installations

Défauts

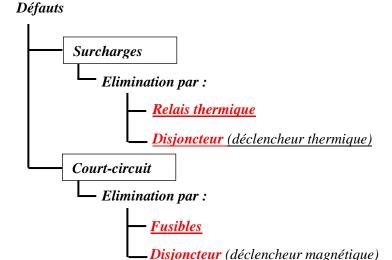
<u>Surintensité</u> : Tout courant supérieur à la valeur assignée (valeur normale d'emploi) correspondant à un accroissement anormal du courant absorbé par le circuit, on distingue:

Surcharge : accroissement anormal du courant absorbé par le circuit due à une demande de puissance plus importante.

Exemple : plusieurs radiateurs sur une même prise de courant ou moteur électrique bloqué.

Court-circuit : Elévation brutale du courant absorbé par le circuit due à un contact électrique entre deux conducteurs de polarité différente.

Exemple : 2 conducteurs dénudés qui se touchent.


Surtension: Elévation anormale de la tension due à un défaut d'isolement avec une installation de tension plus élevée, des surtensions atmosphériques, des phénomènes de résonance.

Baisse de tension : Baisse anormale de la tension.

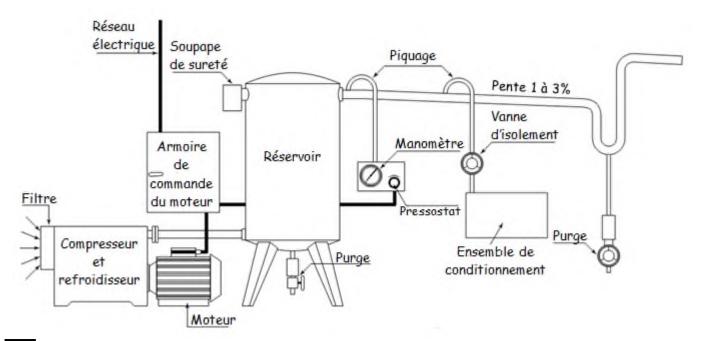
Principe de base de la protection

La protection des installations consiste donc :

- À déterminer <u>la nature des défauts</u> (par exemple des fils mal isolés qui entraînent un court-circuit),
- Puis à les détecter (par des détecteurs à l'aide de lois physiques),
- Et, enfin, à interrompre absolument le circuit en défaut (par coupure du courant).

ENERGIE PNEUMATIQUE

ALIMENTER


L'énergie pneumatique utilise <u>l'air comprimé</u> comme fluide pour le transport de l'énergie, et sa transformation en énergie mécanique.

1 Constitution d'une installation pneumatique

La production est assurée par une installation (ci-dessous) qui comprend :

- Un <u>compresseur</u> actionné par un moteur électrique (pression de 7 à 10 bars).
- Un <u>réservoir accumulateur</u> d'énergie.
- Des dispositifs de sécurité et de régulation (soupape de sûreté, purges, filtres...).
- Des circuits de distributions généralement réalisés en <u>tubes d'acier</u>.
- Un repérage suivant la norme NF E 04-054 qui permet une visualisation rapide de l'installation : pour l'air comprimé, on peint un anneau vert clair suivi d'un anneau rouge pour indiquer qu'il est sous pression.

L'air comprimé est chargé d'impureté et d'eau qu'il faut éliminer pour assurer la longévité du matériel.

2 Production de l'énergie pneumatique

La production d'air comprimé est relativement aisée et nécessite principalement un compresseur, un filtre d'aspiration, un refroidisseur, un sécheur, un accumulateur, des purges et une armoire

Compresseur:

Il a pour rôle d'augmenter la pression de l'air.

Deux types de compresseurs sont utilisés industriellement.

- Compresseurs volumétriques : une quantité d'air à pression P1 est enfermée dans une enceinte à volume variable, on diminue le volume de l'enceinte : la pression augmente jusqu'à P2, cet air est alors dirigé vers le point d'utilisation.
- Turbocompresseurs : une vitesse élevée est communiquée à l'air basse pression. L'air acquiert une énergie <u>cinétique</u>, il est alors canalisé vers le point d'utilisation, son énergie cinétique se transformant en augmentation de <u>pression</u>.

Stockage:

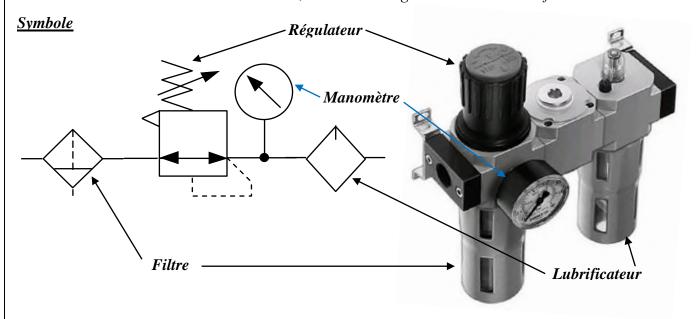
Le compresseur a souvent un débit pulsé, la pression d'air est donc variable.

Un réservoir permet d'atténuer ces variations de pression jusqu'à les rendre négligeables.

Le réservoir permet également de ménager des temps <u>d'arrêt</u> dans le fonctionnement du compresseur.

3 Réseau de distribution de l'air

La distribution d'énergie pneumatique se fait par <mark>canalisations</mark> rigides reliées par des cols de cygnes pour éviter de **recevoir** des impuretés ou de l'eau pouvant séjourner dans les conduites.

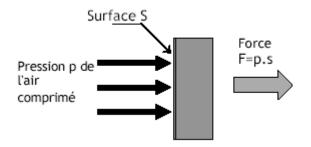

Pour supprimer ces impuretés ou ces eaux stagnantes, il y a des <u>purgeurs</u> au point bas de chaque raccordement, et les canalisations ont une légère pente.

4 Conditionnement de l'air (Unité FRL)

Avant d'utiliser l'air, il faut le filtrer, l'assécher, le graisser et réguler sa pression.

Ainsi, avant chaque SAP (Système Automatisé de Production), on place une unité de conditionnement F.R.L. (appelées aussi « Tête de ligne ») qui <u>adapte</u> l'énergie pneumatique au système.

Cette unité F.R.L. est constituée d'un Filtre, d'un Mano-Régulateur et d'un Lubrificateur.


Unité F.R.L.

Filtre sert à assécher l'air et filtrer les poussières.

Mano-Régulateur sert à régler et réguler la pression de l'air.

Lubrificateur sert à éviter la corrosion et à améliorer le glissement.

5 Principes physiques

En faisant agir l'air comprimé sur une face immobile, on obtient une force F proportionnelle à la pression p et à sa surface d'action S:

F = p. S

avec:

- F est la force résultante en Newton
- p est la pression en Pascals (Pa)
- S est la surface en m^2 .

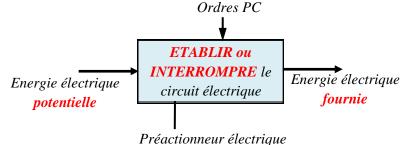
Le pascal étant trop petit pour les pressions utilisées dans l'industrie, on utilise souvent le bar :

<mark>1 bar = 10⁵ Pa</mark>. (Pa : Pascal)

1

Présentation

L'énergie fournie par l'alimentation, qu'elle soit d'origine électrique ou pneumatique doit être distribuée aux différents actionneurs du système. Deux possibilités peuvent alors être envisagées :


- Distribution en tout ou rien (ou par commutation), la source d'énergie est alors mise directement en relation avec l'actionneur.
- Distribution par modulation d'énergie, dans ce cas l'actionneur reçoit l'énergie de façon graduelle.

Ces distributions sont assurées par des préactionneurs qu'on peut classer en fonction des grandeurs d'entrée et de sortie :

- Préactionneurs électriques
- Préactionneurs pneumatiques

2 Préactionneurs électriques T.O.R.

Un préactionneur T.O.R. est un constituant de gestion de l'énergie de commande afin de distribuer une énergie de puissance vers les actionneurs.

Parmi les préactionneurs électriques les plus utilisés on trouve les relais et les contacteurs.

Ces dispositifs permettent de commander un circuit de puissance à partir d'un circuit de commande.

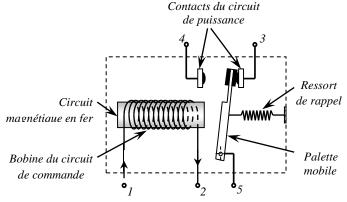
Les relais sont utilisés avec des circuits intégrés et un petit circuit de commutation (transistor), ils permettent de <u>commander</u> un circuit de puissance (contacteurs, lampes...).

Les contacteurs fonctionnent de la même façon que les relais, ils permettent cependant la circulation d'un courant beaucoup plus important.

Les contacteurs sont utilisés pour des très fortes puissances (moteur).

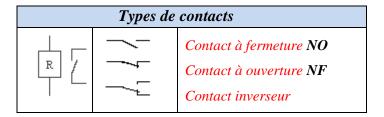
3

Relais


Relais électromagnétique

Définition :

Comme son nom l'indique, il sert en tout premier lieu à "relayer", c'est à dire à faire une transition entre un courant faible et un courant fort. Mais il sert également à commander plusieurs organes simultanément grâce à ses multiples contacts synchronisés.

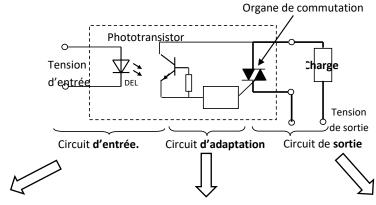

Constitution:

Un relais " standard " est constitué d'une bobine qui lorsqu'elle est sous tension attire par un phénomène électromagnétique une armature ferromagnétique qui déplace des contacts.

Contacts:

Caractéristiques :

Un relais est caractérisé par :


- La tension de sa bobine de commande, 5V à 220V.
- Le pouvoir de coupure de ses contacts, qui est généralement exprimé en Ampère, 0,1A à 50A. C'est le courant maximal qui pourra traverser les contacts.
- Le nombre de contacts souhaités.
- Son emplacement, circuit imprimé, à visser, embrochable, à souder.
- Le type de courant de sa bobine, en général du continu.
- La tension d'isolement entre la bobine et les contacts.
- La gamme de temps pour un relais temporisé.
- Son ambiance, vibrations, humidité, poussières, température.

Relais statique

Définition :

Un relais statique est par définition un organe ayant la fonction d'un relais mais réalisé avec des composants <u>électroniques</u>, sans aucune pièce mécanique en mouvement.

Constitution:

Celui-ci assure <u>l'isolement</u> galvanique entre le circuit de commande et celui de puissance. Cet isolement est assuré par un photocoupleur. Il <u>traite</u> le signal d'entrée et assure la commutation du circuit de sortie. En particulier dans le cas de la commutation au zéro de tension, ce circuit assure que la commutation de la sortie a lieu au zéro de tension suivant.

Il est composé de l'organe <u>de</u>

<u>puissance</u>. Celui-ci peut être un triac

soit des thyristors antiparallèles.

Dans le cas de la commutation de

charges continues, l'élément de

puissance est soit un transistor soit un

MOSFET.

4

Contacteur

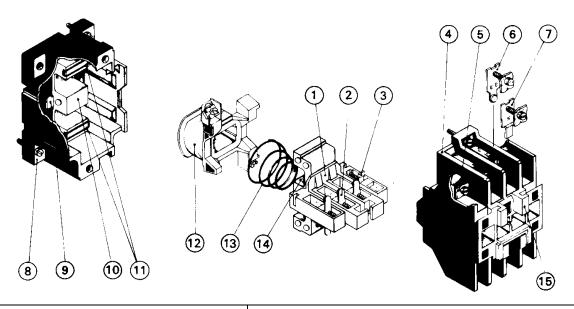
Définition :

Le contacteur assure la même fonction que le relais mais il possède un pouvoir de coupure encore plus important grâce des dispositifs d'extinction de l'arc électrique.

Le pouvoir de coupure est particulièrement important pour la commande de charges fortement selfiques comme les **moteurs** mais aussi de **résistances de puissance** (chauffage).

Pour ces charges l'apparition d'arcs électriques est régulière et il est nécessaire de les interrompre (risque de destruction et d'incendie).

Constitution:

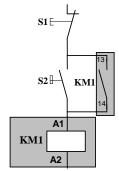

Un contacteur est constitué par :

- Des pôles principaux de puissance,
- *Un ressort de rappel* (13),
- Un circuit magnétique feuilleté de manière à réduire les pertes par courant de Foucault (dues à la présence d'un flux d'induction magnétique alternatif),

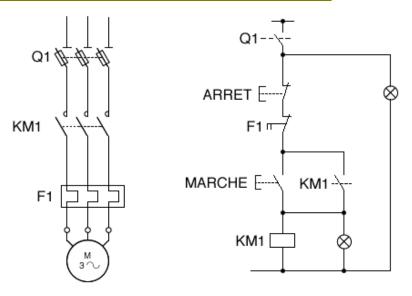
- *Une bobine* (12) (insérée dans le circuit de commande).
- Une «spire de Frager» (11) ou «bague de déphasage» qui évite les vibrations dues à l'alimentation en courant alternatif de la bobine du contacteur.
- Des contacts auxiliaires (3) (possibilité d'additionner au contacteur un bloc de contacts auxiliaires instantanés ou temporisés)
- Une armature fixe (10) et une armature mobile (14).

- 1. Support contacts mobiles de pôle.
- 2. Contact mobile de pôle « F ».
- 3. Contact mobile auxiliaire « O ».
- 4. Boîtier de pôles et chambre de coupure de l'arc.
- 5. Connexion de puissance.
- 6. Contact fixe de pôle « F ».
- 7. Contact fixe auxiliaire « O ».

- 8. Socle.
- 9. Amortisseur de choc de l'électro-aimant
- 10. Partie fixe de l'électro-aimant.
- 11. Bague de déphasage.
- 12. Bobine d'attraction.
- 13. Ressort de rappel de la partie mobile de l'électro-aimant.
- 14. Partie mobile de l'électro-aimant fixation pour bloc auxiliaire.

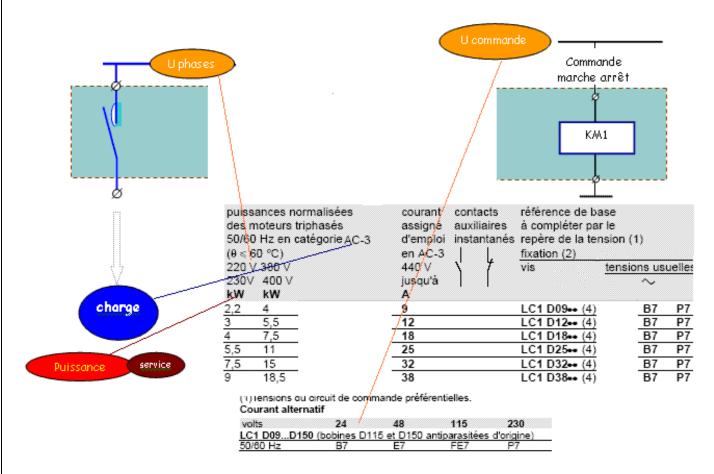

Caractéristiques des contacteurs :

- Tension nominale: tension maximale d'utilisation en courant continu ou en courant alternatif de fréquence 50 ou 60Hz.
- Intensité nominale : courant d'utilisation.
- Pouvoir de coupure : valeur du courant que le contacteur peut couper sous une tension donnée.
- Nombre de pôles : uni-, bi-, tri- et tétrapolaire selon le type d'installation et le régime de neutre.


Représentation et schéma :

SCHEMA COMMANDE

Utilisation du contacteur pour commander un moteur :


Une impulsion sur MARCHE enclenche

KM1 qui s'autoalimente (par son contact auxiliaire).

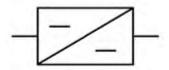
Le moteur tourne.

 Une impulsion sur ARRET provoque <u>l'arrêt</u>.
 Le moteur <u>s'arrête</u>.

Choix d'un contacteur :

Le choix se fait en fonction du courant nominal alternatif ou continu et de la tension nominale et en tenant compte de certains éléments comme :

- La catégorie d'emploi (chauffage, distribution, commande moteur, ascenseurs...).
- La nature du circuit de commande : tension d'alimentation de la bobine.
- Le nombre de manœuvres par heure et du nombre d'heures d'utilisation par jour.
- *Le pouvoir de coupure.*


Exemple de choix: Moteur 2,2 KW /400 V en catégorie AC3 commande 24V alternative.

Choix: LC1 D09 B7

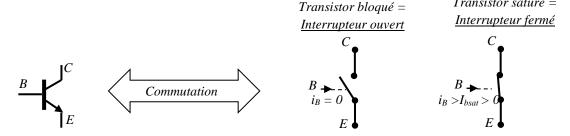
Hacheur série à transistor

Définition

Un hacheur est un préactionneur électrique fonctionnant par le principe de modulation d'énergie.

Transistor saturé =

Il sert à alimenter une charge (moteur à courant continu) sous tension de valeur moyenne réglable à partir d'une source de tension constante.

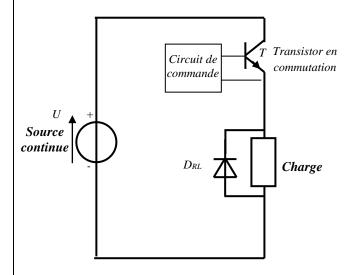

Principe de fonctionnement

Interrupteur électronique

Le principe du hacheur consiste à établir puis interrompre périodiquement la liaison source- charge à l'aide d'un <mark>interrupteur électronique</mark>. Celui-ci doit pouvoir être fermé ou ouvert à volonté, ce sera un thyristor ou un transistor de puissance fonctionnant en régime de commutation.

Transistor bipolaire:

Symbole: (\mathbf{B} : Base – \mathbf{C} : Collecteur – \mathbf{E} : Emetteur)



Fonctionnement:

Le transistor fonctionne comme une "vanne à courant" où i_B est la commande de la vanne qui laisse passer plus ou moins le courant i_C de C vers E.

- Si $i_B = 0$, la vanne est fermée.
- $Si i_B > I_{bsat}$, la vanne est totalement ouverte et laisse passer le courant i_C maximum. (*I*_{bsat} dépend du transistor et du montage)

Schémas

Le transistor fonctionne en commutation (tout ou rien), il est donc:

- Soit bloqué.
- Soit saturé.

La tension de commande du transistor (reliée à la base) est une tension créneaux, de fréquence et rapport cyclique variables indépendamment l'une de l'autre. Lorsque cette tension de commande est positive ($i_B > I_{bsat}$), elle rend le transistor passant et saturé.

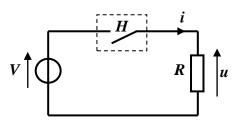
Lorsque cette tension est nulle $(i_B = 0)$ (ou de préférence faiblement négative), elle **bloque** le transistor.

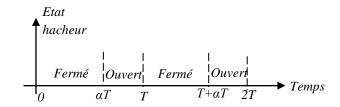
T : est la période de fonctionnement.

α : est le rapport cyclique. Il est égal au rapport :

$$\frac{Dur\acute{e}e \ de \ fermeture}{P\acute{e}riode} = \frac{t_f}{T} = \alpha \ .$$

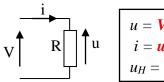
Remarque:


La diode de roue libre D_{RL} assure la continuité du courant dans la charge si celle-ci est **inductive** (bobine ou moteur à courant continu) quand le transistor est **bloqué**.


Caractéristiques électriques

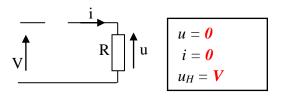
Débit sur une charge résistive

Schémas de montage :


Séquence de fonctionnement du H

Analyse de fonctionnement

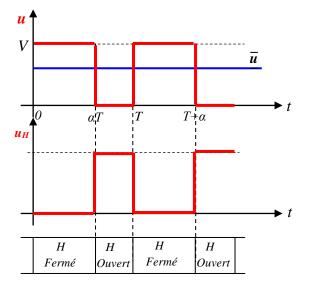
 $0 < t < \alpha T$: H est fermé:

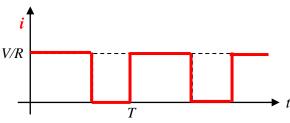


$$u = V$$

$$i = u/R = V/R$$

$$u_H = 0$$


 $\alpha T < t < T : H \ est \ ouvert :$



On appelle α le rapport cyclique. Il est égal au rapport : $\frac{\mathrm{Du}}{\mathrm{d} t}$

$$\frac{\text{Dur\'ee de fermeture}}{\text{P\'eriode}} = \frac{t_f}{T} = \alpha.$$

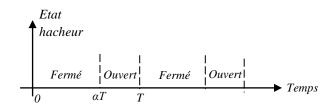
Oscillogrammes:

Valeur moyenne de la tension en sortie du hacheur

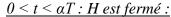
Exprimons la valeur moyenne de u en fonction du rapport cyclique α .

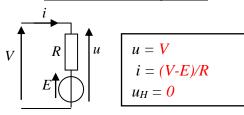
Pour cela nous calculons sa valeur moyenne sur une période : $\bar{u} \cdot T = V.a.T$ (Calcul des surfaces).

Soit: $\overline{u} = \alpha . V$.

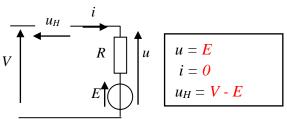

 $\underline{Remarque}$: En réglant α de 0 à 1, on fait varier la tension aux bornes de la résistance de 0 à V.

Débit sur une charge R,E

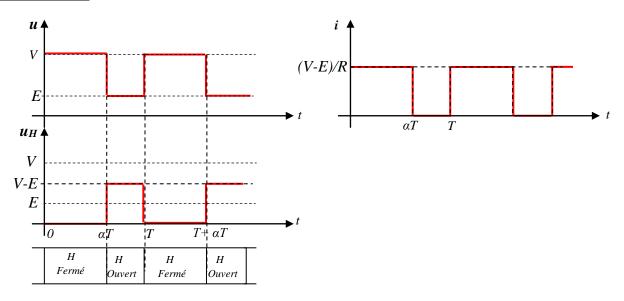

Schémas de montage :


$V \uparrow \bigcirc \qquad \qquad \stackrel{i}{\underset{E \uparrow \bigcirc}{}} \downarrow u$

Séquence de fonctionnement du H



Analyse de fonctionnement :



$\underline{\alpha T} < t < T : H \ est \ ouvert$:

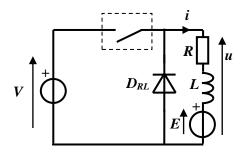
Oscillogrammes:

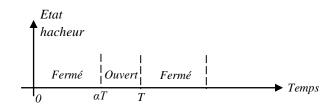
Valeur moyenne de la tension en sortie du hacheur

Exprimons la valeur moyenne de u en fonction du rapport cyclique a.

Valeur moyenne: $\overline{u} = S/T = \alpha . T. V/T + (T - \alpha . T) E/T$ Soit: $\overline{u} = \alpha . V + (1 - \alpha) E$

Débit sur une charge R, L, E (moteur à courant continu)


Le hacheur série est souvent employé pour commander un moteur à courant continu.


On rappelle que la vitesse d'un tel moteur est proportionnelle à la tension d'alimentation.

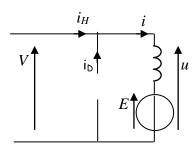
Pour un bon fonctionnement du moteur, il est préférable que le courant soit le plus régulier possible, d'où la présence d'une bobine de lissage. Si son inductance L est suffisamment grande, on pourra considérer le courant comme constant ($\Delta i \approx 0$).

Schémas de montage :

Séquence de fonctionnement du H

Analyse de fonctionnement :

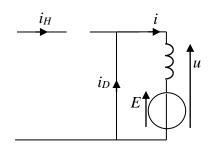
Les résistances de l'induit et de la bobine (R) sont négligées.


Tension aux bornes de la charge

Elle est identique que précédemment, sa valeur moyenne est : $\overline{\mathbf{u}} = \alpha . V$

Ondulation du courant (régime établi) :

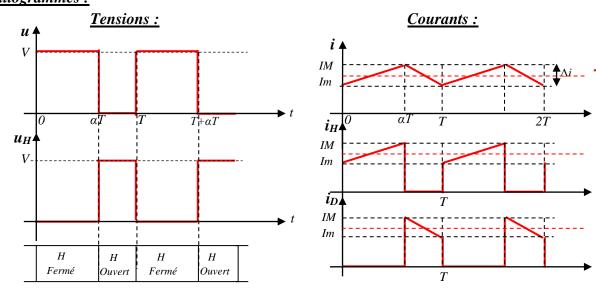
• $0 \le t \le \alpha T : H \text{ est fermé} :$


L'inductance se charge en courant et i croit de Im (courant minimal) vers IM (courant maximal)

 $i_H = \mathbf{i}$ $i_D = \mathbf{0}$ (diode bloquée)

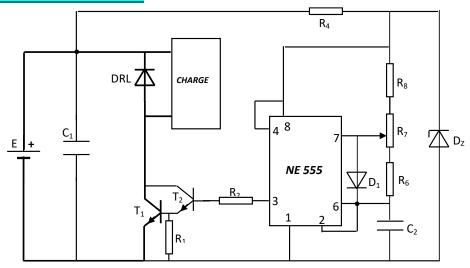
• $\alpha T < t < T$: H est ouvert:

L'inductance se décharge à travers la diode de roue libre et i décroit de IM vers Im

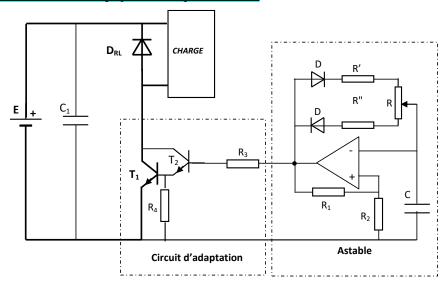

 $i_H = 0$ $i_D = i$ (diode passante)

- La valeur moyenne de i(t): $\overline{i} = (IM + Im)/2$
- L'ondulation maximale du courant est donnée par la relation : $\Delta_{imax} = V/(4Lf)$

Pour diminuer Δi , il faut augmenter l'inductance L ou /et la fréquence.

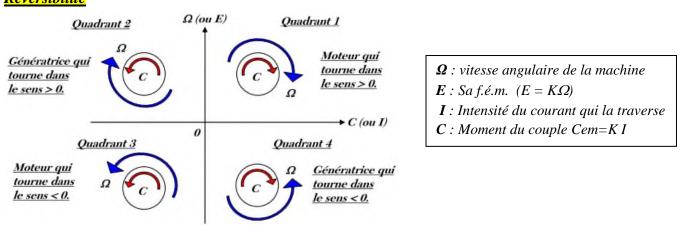

Dans les réalisations industrielles, on préfère augmenter la fréquence de hachage afin de diminuer l'importance des bobines (encombrement et coût).

Oscillogrammes:



Exemple de circuit de commande

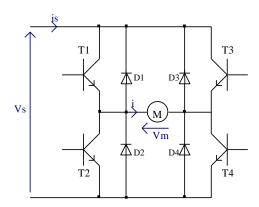
Circuit de commande à base de NE 555


Circuit de commande à base de l'amplificateur opérationnel

Hacheur réversible

Ce fonctionnement n'est possible que si la charge est un moteur à courant continu qui est une machine réversible.

Réversibilité



Si la machine est un moteur de traction fonctionnant normalement dans le **quadrant 1**, on doit pouvoir freiner celui-ci : au lieu d'utiliser pour cela des moyens mécaniques, on peut utiliser des moyens électriques qui économisent de l'énergie. Il suffit en effet de faire fonctionner la machine en génératrice, et, tant qu'elle

tourne (E>0), de lui faire renvoyer de l'énergie dans sa source d'alimentation. La figure ci-dessus montre alors que le courant change de signe et on passe dans le **quadrant 2**.

Après la phase de freinage, on peut être conduit à demander à la machine de reprendre son fonctionnement en moteur, mais avec un sens de rotation différent du premier (Ω <0). L'explication des deux autres quadrants se fait de manière identique à la précédente.

Hacheur ''quatre quadrants''

Fonctionnement:

Les interrupteurs T1 et T4 sont commandés simultanément avec la période T. Ils sont commandés à la fermeture pour $t \in [0]$; αT] et ouverts le reste de la période.

Les interrupteurs T2 et T3 sont commandés simultanément avec la période T. Ils sont commandés à la fermeture pour $t \in [\alpha T; T]$ et ouverts le reste de la période.

On peut montrer que $\langle Vm \rangle = (2\alpha - 1) Vs$.

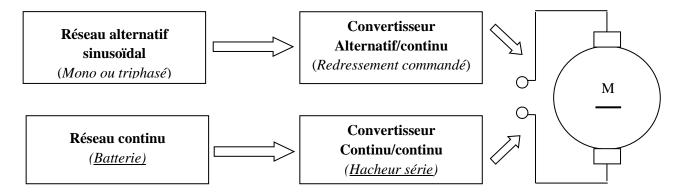
Lorsque < I > est positive, la machine fonctionne en moteur si E > 0, soit $\alpha > 1/2$ et en génératrice si E < 0, soit pour $\alpha < 1/2$.

Lorsque < I > est négative, la machine fonctionne en génératrice si E > 0, et en moteur si E < 0. Un tel hacheur permet un fonctionnement de la MCC dans les 4 quadrants.

3 Variateurs de vitesse pour moteur à courant continu

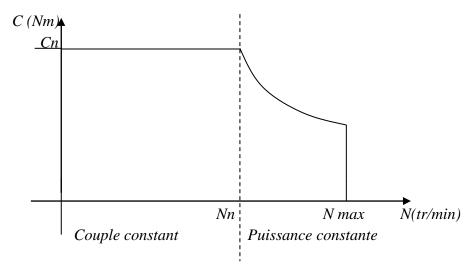
Les variateurs de vitesse sont des **préactionneurs** <u>analogiques</u> c'est-à-dire qu'ils permettent de commander des actionneurs électriques (moteurs) par **modulation de l'énergie**.

Principe


D'après les principes des moteurs à courant continu, on fait varier sa vitesse :

- Par variation de la tension moyenne aux bornes de l'induit.
- *Par variation du flux inducteur (variation de la tension d'inducteur).*

Pour faire varier les tensions d'induit ou d'inducteur, le variateur utilise des convertisseurs statiques constitués de composants électroniques.


Constitution

En fonction de la nature de la source électrique, il existe deux types de convertisseur :

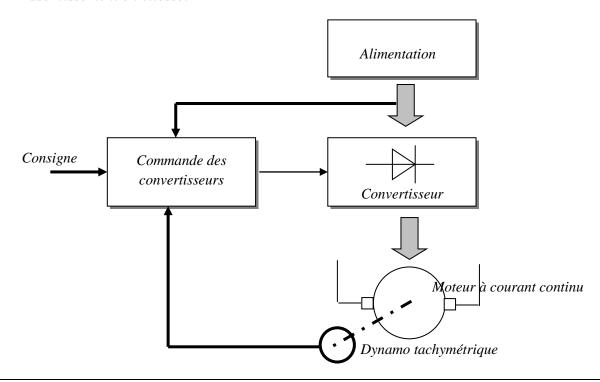
Variateur pour moteur à courant continu dans l'industrie

Caractéristique de l'association moto variateur

De 0 à la vitesse nominale (Nn):

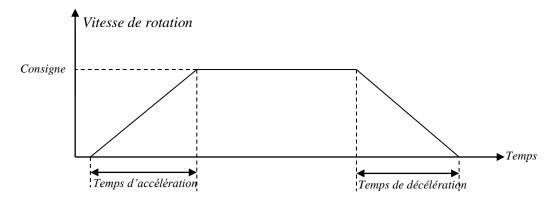
- Fonctionnement à couple constant.
- Variation de vitesse par variation de la tension d'induit
- Fonctionnement à flux constant

De la vitesse nominale à la vitesse maximale (Nmax) :


- Fonctionnement à puissance constante
- *Variation de vitesse par diminution du flux inducteur (defluxage).*

Les variateurs de vitesse permettent une gamme de vitesse de 1 à 200.

$$(Gamme\ de\ vitesse = \frac{Vitesse\ max}{Vitesse\ min})$$

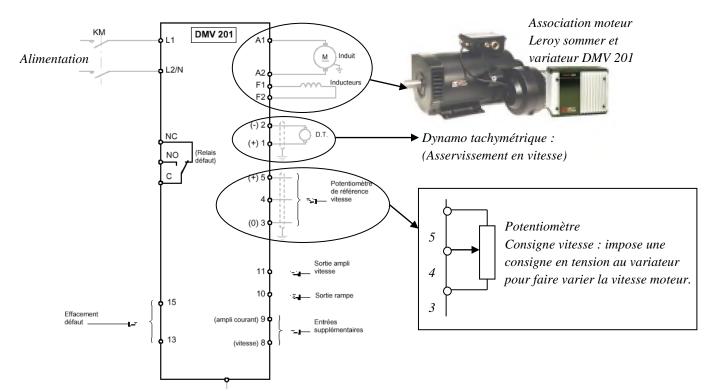

Fonctions disponibles sur les variateurs.

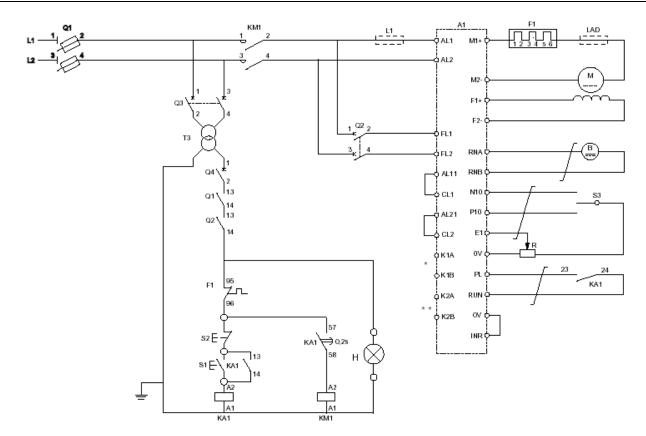
- Limitation de courant Rôle : protection thermique du moteur Réglage : 1,5 x In
- Asservissement en vitesse.

La vitesse du moteur est régulée, en fonction :

- La consigne.
- L'image de la vitesse donnée par la dynamo tachymétrique.
- Rampe d'accélération et de décélération réglable

Exemples de variateur de vitesse industriel





Présentation des schémas de câblage

Le variateur LEROY SOMMER DMV 201 est un variateur 2 quadrants (quadrant 1 et 4)

Le variateur **RECTIVAR 4** série 44 est un variateur 4 quadrants

Exemple de document de choix d'un variateur RECTIVAR 4 série 44

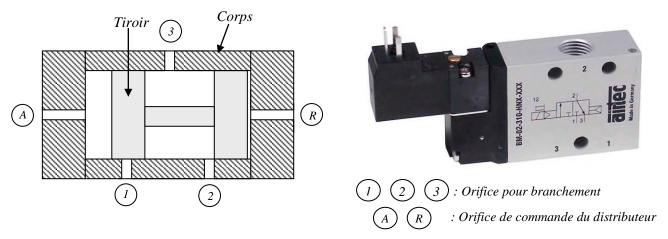
Le choix d'un variateur se fait essentiellement en fonction :

- Du réseau d'alimentation : tension d'alimentation, système monophasé ou triphasé.
- De la puissance utile du moteur à commander.

Chaix:
pages 0504Q/2 at 0504Q/3
Caractóristiques:
pages 60303/2 à 60303/4
Schémas:
page 60303/6
Encombraments:
page 60303/9

Rectivar 4, série 44 pour moteurs de 0,6 à 8,6 kW

Références


Réseau		Variateur			Moteur				Variateur (4)	
Tension 50/60 Hz		Fusibles UR non fournis	Courant maximal permanent 40 °C Nominal Pointe		Puissance maximale avec n = 0,85 Cd/Cn			Cou- rant exci- tation maxi	Ráférence	Masse
				-	-1,2			(3)		
V	A	A	Α	A	kW	kW	kW	A		kg
Tension	d'induit 1	50 V								
220	8	20	6	9	0,6	1,15	0,5	2	RTV-44U60M	3,600
	16	25	12	18	1,25	2,3	1	2	RTV-44D12Q	3,600
	32	40	24	36	2,55	4,6	2	2	RTV-44D24Q	6,000
	58	100	44	66	4,6	8,4	3,7	2	RTV-44D44Q	6,000
Tension	d'induit 1	60 V								
240	8	20	6	9	0.65	1.2	0,55	2	RTV-44U60M	3,600
	16	25	12	18	1,35	2,45	1,1	2	RTV-44D12Q	3,600

1 Rôle d'un préactionneur pneumatique

L'étude est limitée aux préactionneurs pneumatiques **T**out **O**u **R**ien (**T.O.R**.) que l'on appelle distributeurs pneumatiques. Ils ont pour rôle de <u>diriger</u> le fluide ou l'air (sous pression) dans certaines directions. C'est grâce à eux qu'on peut commander de la sortie ou de la rentrée de tige d'un vérin par exemple.

2 Constitution (description)

Nous ne parlerons que des distributeurs à tiroirs (les plus utilisés).

D'une manière générale, un distributeur est composé principalement d'un **corps**, d'un **tiroir**, des **orifices** d'entrée et de sortie du fluide ou de l'air et une ou deux **commandes** de pilotage.

3 Fonctionnement

Par hypothèse, on suppose que :

- La pression alimente l'orifice 1
- L'orifice 2 est à l'air libre
- L'orifice 3 est relié à un vérin simple effet.

Si l'on applique une pression à la commande (R); Le tiroir se déplace vers <u>la gauche</u>, et l'air sous pression serra envoyé dans la chambre du Vérins : la tige <u>sort</u>.

Si l'on applique une pression à la commande (A); Le tiroir se déplace vers <u>la droite</u> : la tige du vérin <u>rentre</u>.

A Pression d'alimentation

4 Caractéristiques

La symbolisation des distributeurs pneumatiques intègre trois fonctions :

- <u>Les orifices</u>: ce sont les raccordements nécessaires au passage de l'air comprimé, les flèches indiquent le sens de circulation de l'air.
- <u>Les positions</u>: elles sont représentées par des cases, il y a autant de cases que de position du distributeur.
- Les organes de commandes : ils déterminent la façon dont le distributeur est piloté.

Si le vérin est à Simple Effet

Il ne comporte donc qu'un seul orifice à alimenter sur le vérin, on utilise alors un distributeur ne comportant qu'un seul orifice de sortie, c'est-à-dire un distributeur 3/2, trois orifices et deux positions.

Si le vérin est à Double Effet

Il comporte donc deux orifices sur lesquels il faut alterner les états de pression et d'échappement. On utilise alors un distributeur 4/2 ou 5/2.

Exemple: Le distributeur utilisé précédemment utilise :

- 3 orifices
- 2 positions de tiroir
- 2 commandes pour 2 positions (bistable)

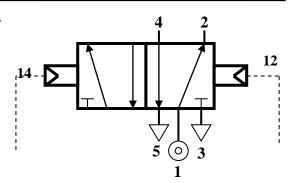
Il s'agit donc d'un distributeur 3/2

Si le distributeur possède une commande de chaque côté, il est dit <u>bistable</u>. C'est à dire qu'il faut faire une action à chaque fois que l'on veut changer d'état.

Si le distributeur possède une seule commande d'un côté et un ressort de l'autre, il est dit <u>monostable</u>. C'est à dire qu'il faut faire une action pour changer d'état et <u>cesser</u> cette action pour revenir à l'état précédent.

5 Repérage des orifices

Le repérage des orifices des distributeurs est réalisé suivant une codification normalisée.


1 : alimentation de pression

2 et 4: orifices d'utilisation

3 et 5 : orifice d'échappement

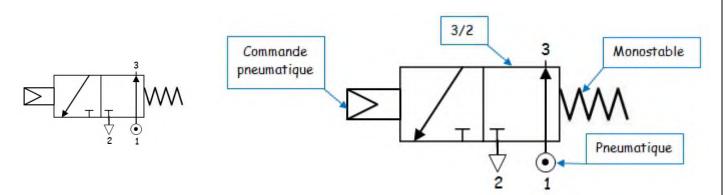
14 : pilotage, fonction commande (mettant en communication l'arrivée de pression (1) avec l'utilisation (4)).

12 : pilotage, fonction rappel (mettant en communication l'arrivée de pression (1) avec l'utilisation (2)).

6

Types de distributeurs et leur symbolisation

On indique les dispositifs de commande à l'aide de symbole normalisé


Code	Symbole	orifices	positions
2/2	Normalement fermé	2	2
3/2		3	2
3/2		3	2
4/2		4	2
5/2		5	2

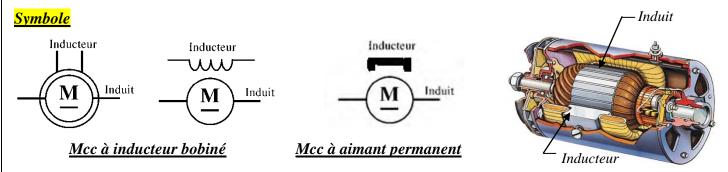
Différents types de commande

	Comman	Commande mécanique				
Commande manuelle : symbole général	Commande manuelle par levier	Commande manuelle par pédale	Commande manuelle par bouton poussoir	Commande mécanique par galet	Commande mécanique par poussoir	
. —		二		⊕		

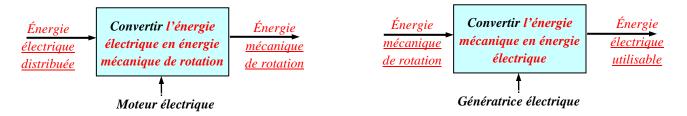
Commande indirecte						
Commande électrique	Commande pneumatique	Commande Electropneumatique	Rappel par ressort	Dispositif de maintien en position « verrouillage mécanique »		
	≥	中国		Exemple		
			WM			

Exemple de désignation d'un distributeur

→ Distributeur <u>Pneumatique</u> 3/2 <u>Monostable</u> à <u>Commande pneumatique</u> avec rappel par Ressort.

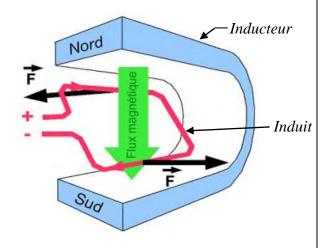

1 Présentation

Les machines ont très souvent besoin d'énergie **mécanique de rotation ou de translation** afin de réaliser leurs **actions sur la matière d'œuvre**.


Cette énergie est généralement dérivée de **l'énergie électrique** par l'intermédiaire d'un **moteur** (actionneur electrique) qui peut être de type **continu** ou **alternatif**.

2

Actionneur électrique : Moteur électrique à courant continu


Modèle fonctionnel

<u>Principe de fonctionnement</u>

Si un **conducteur** de longueur \mathbf{l} et en forme de spire, parcouru par un **courant** \mathbf{l} , est placé dans un champ **magnétique** \mathbf{B} (flux magnétique $\mathbf{\Phi}$), il est soumis à **des forces de Laplace** $\mathbf{F} = \mathbf{B}.\mathbf{L}.\mathbf{L}$

Ces deux forces créent un **couple** de rotation qui fait **tourner** la spire sur son axe. Quand la spire a fait un demi-tour, il faut inverser la polarité pour inverser le sens des forces et continuer le mouvement. Ce sera le rôle du **collecteur**.

Constituants électriques

Inducteur

Situé dans le stator (partie fixe du moteur), il crée le champ d'induction magnétique (flux magnétique Φ). Il peut être formé d'aimants en ferrite ou de **bobines** parcourues par un **courant continu**.

Induit

Solidaire du rotor (partie mobile ou tournante du moteur), il est le siège des <u>forces</u> nécessaires à son entraînement. Il est composé de spires (conducteurs) placées dans des encoches situées à la périphérie d'un empilement de tôles cylindriques. Les extrémités des spires sont reliées sur les **lames du collecteur**.

Collecteur et Balais

Le collecteur est un ensemble de lames de cuivre où sont reliées les extrémités du bobinage de l'induit. Les balais (ou charbons) sont situés au stator et frottent sur le collecteur en rotation. Le dispositif **collecteur / balais** permet donc de faire <u>circuler</u> un courant dans l'induit.

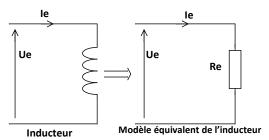
Force électromotrice d'induction

Le déplacement des conducteurs de l'induit dans le champ magnétique de l'induteur fait apparaît aux bornes de ces derniers une **f.é.m.** induite. On montre que la f.é.m. induite totale **E** qui apparaît aux bornes de l'induit vaut : $E = K.\Phi.\Omega$

Avec: K: constante du moteur

 Φ : Flux utile sous un pôle de l'inducteur (en Weber : Wb)

 Ω : vitesse de rotation (en rad/s)


Les machines à courant continu peuvent fonctionner tant en moteur qu'en génératrice :

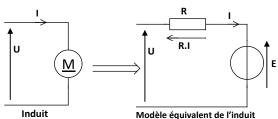
- si on alimente l'induit, le rotor se met à tourner,
- si on fait tourner le rotor, l'induit <u>génère</u> une f.é.m. **E**.

On dit que les machines à courant continu sont réversibles.

<u>Modèle équivalent du moteur à courant continu</u>

<u>Modèle équivalent de l'inducteur</u>

Lorsque l'inducteur n'est pas à aimants permanents, il est constitué de bobines en série traversées par un courant continu **Ie**, appelé **courant d'excitation**. On sait, de plus, qu'en courant continu, une bobine est équivalente à sa résistance.


avec: $U_e = R_e I_e$

 R_e : résistance de l'inducteur (Ω)

 U_e : tension d'alimentation de l'inducteur (V)

 I_e : intensité du courant d'excitation (A)

Modèle équivalent de l'induit

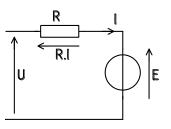
L'induit, soumis à une tension U dite tension d'induit, est constitué de conducteurs, de résistance R, traversés par un courant continu I dit courant d'induit. Il génère une f.é.m. ou une f.c.é.m. suivant qu'il fonctionne en génératrice ou en moteur.

<u>Loi des mailles</u>: U - R.I - E = 0 donc: U = E + R.I

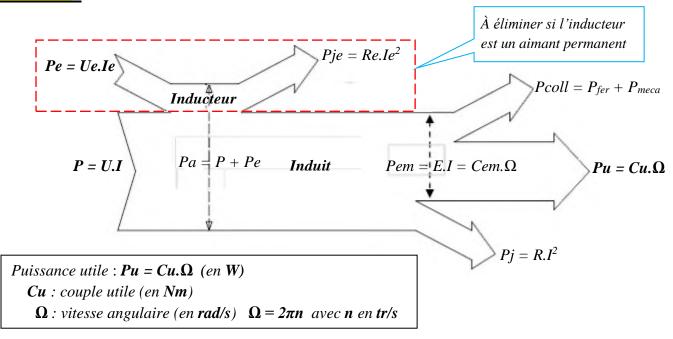
Avec : R : résistance de l'induit (Ω)

U : tension d'alimentation de l'induit (V) I : intensité du courant de l'induit (A) E : f.c.é.m. générée par l'induit (V)

COURS SI – Unité A.D.C Page 40/52 ISTE - 2019/2020


Relation correspondante:

$$U = E + R.I$$


En multipliant par I, on obtient:

$$\begin{array}{c|c}
\hline{U.I} & E.I + R.I^2 \\
\hline{Puissance} & Puissance & Pertes parts \\
\hline
\end{array}$$

Puissance Puissance Pertes par effet Joule absorbée électromagnétique dans l'induit

En résumé :

De plus, le rotor (matériau ferromagnétique) est en mouvement dans un champ magnétique, d'où l'apparition de pertes magnétiques notée P_{fer} .

D'autre part, le rotor en rotation sera le siège de pertes mécaniques notées $P_{m\acute{e}ca}$

Remarque :

Toute la puissance absorbée par l'inducteur (P_e) est convertie en pertes par effet Joule (P_{ie})

Rendement:

Du fait de ces différentes pertes, le rendement d'une machine à courant continu varie entre 80 et 95 %.

Rendement = Puissance fournie (utile) / Puissance totale absorbée. = Pu / Pa

- Pa = U. I + (puissance absorbée par l'inducteur)
- $-Pu = Cu . \Omega$

D'où rendement :

$$\eta = (Cu.\Omega) / (UI + Pe) = (Pa - \sum pertes) / Pa$$

<u>Comportement au démarrage :</u>

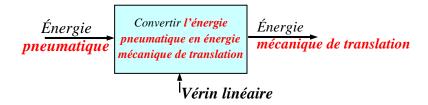
U = E + RI (équation toujours vraie) soit : I = (U - E) / R.

Au démarrage, la vitesse de rotation est **nulle** ($\Omega = 0$) donc E = 0. Le courant de démarrage vaut donc :

$$Id = U/R$$
 Et $Cd = k'.Id = k'.U/R$

Le courant peut-être très important au démarrage et détruire les contacts collecteur-balai : il faut donc limiter ce courant Id : utilisation de démarreur, variateurs de vitesses.

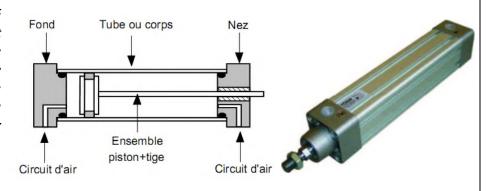
Le couple de démarrage est aussi très important et pas forcément toléré par les organes mécaniques.


1

Vérins pneumatiques

Définition

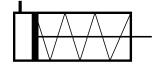
Les actionneurs pneumatiques les plus répandus sont les vérins pneumatiques linéaires. Ils transforment l'énergie pneumatique (**pression**, **débit**) en énergie mécanique (**effort**, **vitesse**)


Modèles fonctionnels

Constitution d'un vérin

Quel que soit le vérin, son type et son constructeur, il sera constitué des mêmes éléments. Le piston est solidaire de la tige qui peut se déplacer à l'intérieur du corps. Le corps est délimité par le nez et le fond dans lesquels sont aménagés les orifices d'alimentation en air comprimé.

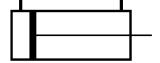
Les espaces vides qui peuvent être remplis d'air comprimé s'appellent les chambres.



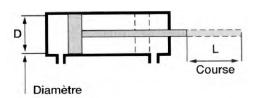
Principaux types

Vérin simple effet

Le vérin simple effet est un composant monostable (stable dans une seule position).


Ce type de vérin ne peut produire un effort significatif que dans un seul sens, le rappel de tige est assuré par un ressort.

Vérin double effet


Le vérin double effet est un composant <u>bistable</u> (stable dans deux positions).

Ce type de vérin peut produire un effort significatif dans les deux sens, le rappel de tige est obtenu par inversion de l'alimentation des deux chambres.

Caractéristiques et effort axial exercé

- Diamètre du piston
- Diamètre de la tige
- Pression d'alimentation (Pa ou bar avec 1 bar = $10^5 Pa$)

Calcul de l'effort axial en sortie de tige

F = p.S Avec

F: Force exercée par la tige en Newton (N)

S: Surface d'action de l'air sur le piston en (m²)

p: Pression de l'air à l'alimentation en Pascal (Pa)

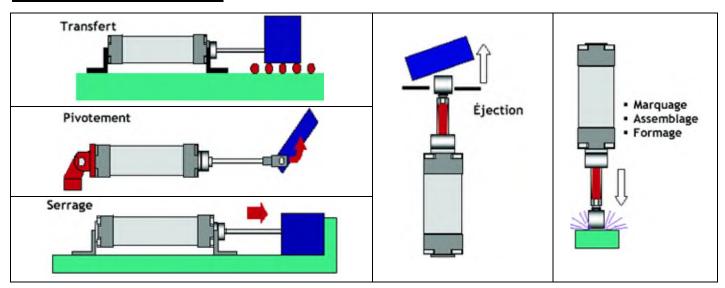
Lorsqu'on alimente la chambre avant, la surface d'action de l'air est plus faible que lorsqu'on alimente la chambre arrière du fait de la présence de la tige. Pour une même pression d'alimentation, la tige exerce donc une force plus grande en sortant qu'en rentrant

• Pour la sortie de tige : $Fsp = \pi/4.D^2.p$

• Pour la rentrée de tige : $\mathbf{Fst} = \pi/4.(D^2-d^2).\mathbf{p}$

Avec:

 $m{D}$: diamètre de piston (cm).


d : diamètre de la tige (cm).

p: pression d'alimentation (bar).

Fsp: effort statique développé en poussant (daN).

 F_{St} : effort statique développé en tirant (daN).

Exemple d'utilisation des vérins

Vérins spéciaux

Vérin compact

Permet de développer des efforts importants sur des courses faibles dans des applications où l'encombrement axial doit être le plus réduit possible.

Particulièrement adapté, grâce à sa compacité et son court temps de réponse, aux fonctions de serrage, blocage, éjection, indexage, élévation et verrouillage de pièce dans toutes les applications industrielles.

Permet de translater entre deux positions fixes un produit qui n'exige pas de guidage du type glissière, mais nécessite d'être arrêté en rotation.

Très utilisé dans les mouvements terminaux de manipulation de produit.

Mouvement de montée baisse de pièce suspendue. Pousseur de pièce dans les systèmes de transitique, manipulation de produit léger.

Vérin rotatif

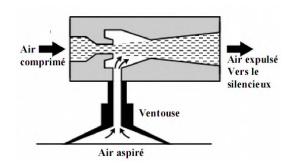
Assure le plus généralement deux fonctions : guidage et entraînement en rotation du mobile, d'où l'importance de le dimensionner par rapport au mouvement à développer (couple, angle, moment d'inertie) et aux efforts axiaux et radiaux appliqués sur l'arbre de sortie.

Principalement utilisé pour des opérations de manipulation lorsqu'il y a lieu d'orienter le produit.

Vérin sans tige

Permet de mouvoir en translation, avec une grande amplitude, un mobile guidé entre deux positions précises de fin de course. Très utilisé dans les tâches de manipulation, manutention, transitique et palettisation, en raison de son faible encombrement en longueur et de ses sections de piston identique.

2


Générateur de vide ou "Venturi"

Le générateur de vide a pour fonction de transformer la pression de l'air comprimé en une pression inférieure à la pression atmosphérique.

Un tuyau branché sur la prise de vide transmet cette dépression à l'effecteur (les ventouses).

Cette dépression permet aux ventouses de saisir les objets à déplacer en <u>les aspirants</u>. Les ventouses plaquent ainsi les objets contre elles

Fonctionnement :

L'air comprimé, en passant rapidement dans le venturi, provoque à cet endroit une dépression et entraîne avec lui l'air présent dans le conduit perpendiculaire.

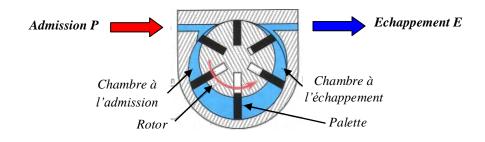
D'où l'aspiration disponible au niveau de la ventouse.

3

Moteurs

Un moteur rotatif alimenté en air comprimé produit un mouvement de rotation dans un ou deux sens, à des fréquences pouvant atteindre 30 000 tr/min et des puissances de 10 kW.

Il en existe plusieurs types : à piston, à engrenage, à turbine.


La technologie à palettes est la plus utilisée, en raison de ses nombreuses qualités.

Fonctionnement:

L'air comprimé pénètre dans le moteur par l'orifice P et arrive dans une chambre d'admission, où il exerce une force motrice sur la palette la plus proéminente.

Ainsi, le rotor tourne et l'air se détend.

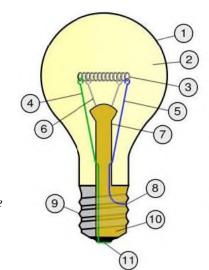
Dans le deuxième secteur du moteur, l'air des chambres à l'échappement se vide par l'orifice E.

Conversion énergie électrique en énergie lumineuse

Cette conversion consiste en une transformation de l'énergie électrique en rayonnement lumineux. Si l'on ne s'en tient qu'à l'éclairage nous avons 2 grandes familles qui regroupent plusieurs catégories.

Familles	Catégorie		
Lampes à incandescence	La lampe standard		
Lampes a incanaescence	La lampe à iode (halogène)		
	Lampe fluorescente		
	Lampe Fluo compacte		
Laurence à déalamac	Lampe à vapeur de mercure		
Lampes à décharge	Lampe à iodure métallique		
	Lampe à vapeur de sodium : - Basse pression		
	- Haute pression		

La lampe incandescence


La lampe à incandescence standard

Principe et constitution :

Un filament en tungstène est porté à une température de 2250° à 2400°.

L'énergie électrique est transformée en **énergie calorifique** ; du fait de la haute température, il y a production d'énergie lumineuse.

Pour éviter la détérioration du filament, on le place à l'abri de l'oxygène dans une ampoule contenant un gaz inerte (argon, krypton).

- 1. Bulbe de verre, ou enveloppe
- 2. Gaz inerte à basse pression
- Filament de tungstène
- Fil conducteur (contact avec le culot)
- 5. Fil conducteur (contact avec la base)
- 6. Fils de support
- 7. Monture ou support en verre
- 8. Base (contact électrique)
- 9. Culot (pas de vis)
- 10. Isolant
- 11. Plot (contact électrique)

Forme des ampoules

Lampe Standard Belle

Lampe Flamme

Lampe Sphérique

Lampe Tube

Lampe Tube Linolite

Désignation d'une lampe :

Elle doit comprendre:

La puissance: 15 - 25 - 40 - 60 - 75 - 100 - 150 - 200 - 300 - 500 - 1000. (Watts)

<u>La tension</u>: en général 220 V; tension particulière: 24/27 - 115/120 - 135/140 - 240 - 250 V.

Le type de culots : ils sont normalisés.

Culots à vis (Edison)

E27

F14

Culots à baïonnette

B 22

Avantages / Inconvénients

Avantages	Inconvénients
 Lumière agréable. Peu encombrante. Montage facile. Allumage instantané. Prix d'achat faible. 	 Efficacité lumineuse faible : 12 lm/W. Durée de vie assez courte : 1000 heures. Pertes d'énergie sous forme calorifique relativement importante pour les grandes puissances.

Les lampes à iodes (halogène).

La lampe à <u>iode</u> est une variante de la précédente.

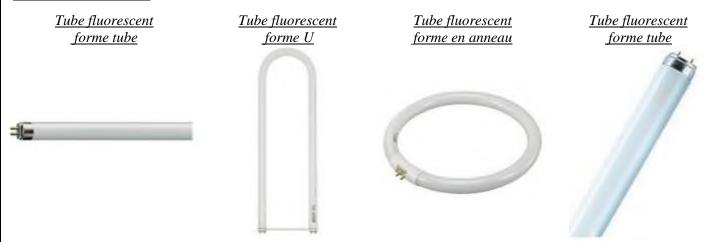
Ces lampes à iode ont une efficacité supérieure, un flux lumineux constant, ne noircissent pas et durent deux fois plus longtemps.

Forme des ampoules :

Les lampes à décharge

On distingue deux grands modes de fonctionnement des lampes à décharge :

- À cathode froide: tubes luminescents (enseignes lumineuses), lampes néon (voyant, veilleuses)
- À cathode chaude: tube fluorescent, lampes à vapeur de mercure, lampes à vapeur de sodium haute et basse pression, lampes aux iodures métalliques.

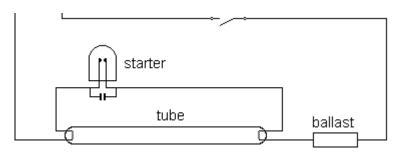

Remarque: toute lampe à décharge nécessite un appareillage auxiliaire: il faut limiter le courant qui traverse la lampe (ballast) et créer une surtension (ballast + starter)

Les lampes fluorescentes

Principe de la fluorescence :

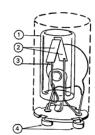
Le tube en verre contient de la vapeur de mercure à basse pression. Lorsque la décharge électrique s'établit entre les deux électrodes, un phénomène de luminescence ultraviolet apparaît. La poudre fluorescente qui couvre l'intérieur du tube transforme ce rayonnement en lumière visible.

Forme des ampoules


Fonctionnement de la lampe

Les lampes fluorescentes standards nécessitent trois appareillages spécifiques :

- Starter pour l'allumage
- Condensateur pour améliorer la qualité du courant
- Ballast pour entretenir la décharge et stabiliser le courant.


Il existe deux types de ballasts : ferromagnétique ou électronique (sans starter, ni condensateur).

Amorçage puis stabilisation à l'aide d'un starter et d'un ballast.

Constitution d'un starter :

- 1. Ampoule contenant du gaz néon.
- 2. Éléments contacts bimétalliques.
- 3. Condensateur d'antiparasitage.
- 4. Broches formant culot.

Démarrage d'un tube fluorescent :

	Au repos, le starter est ouvert.
	Fermeture de l'interrupteur.
___________________	Dans le starter le néon devient luminescent et chauffe les électrodes.
	Les électrodes se déforment et viennent se toucher.
	Dans le tube fluorescent, les électrodes sont formées d'un fil spiralé en tungstène. Le courant passe et chauffe les électrodes (comme le filament d'une lampe à incandescence). Cela a pour effet d'élever la température du gaz argon et de vaporiser le mercure contenu dans le tube.
Ξ	Les électrodes du starter se refroidissent et se séparent. Cette coupure du circuit provoque une surtension (due au ballast). Cette surtension entre les 2 extrémités du tube rend conducteur les vapeurs de mercure contenues dans le tube.
	Un rayonnement ultraviolet invisible est émis. Des poudres fluorescentes déposées à l'intérieur du tube ont pour effet de transformer ces radiations émises par les vapeurs de mercure (ultraviolet) en lumière visible.
	Le tube devient lumineux.
	Le ballast limite alors le courant (risque de surintensité).

Désignation d'un tube fluorescent.

Un tube fluorescent est indissociable de son appareillage et il faut bien tenir compte des éléments suivants :

• La puissance électrique. Elle est directement liée à la long du tube.

18W - 0.60m; 36W - 1.20m; 58W - 1.50m

- La teinte de couleur. Blanc confort, Blanc soleil, etc.
- La nature du dispositif d'allumage : Avec starter ou bande d'amorçage extérieure ou inférieure.
- Le culot: 1 ou 2 broches.
- La forme du tube : droit, circulaire, en U, miniature.

Avantages / Inconvénients

Avantages	Inconvénients
 Durée de vie de l'ordre de 7000 heures. Faible consommation d'énergie 	 Un équipement d'amorçage et d'alimentation spécial est nécessaire
 Permet de réaliser des éclairements élevés Efficacité lumineuse : 25 à 75 lm/W 	 Prix de l'installation initiale plus élevé qu'en incandescence

Les lampes fluo compactes

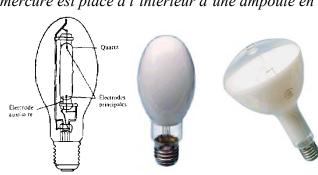
Ces lampes ont été créées pour remplacer la lampe à incandescence.

Elles sont munies d'un ballast intégré dans le culot, soit à baïonnette soit à vis, pouvant être mise en place directement à la place des lampes à incandescence standard.

Forme des ampoules :

Les lampes à vapeur de mercure

Cette lampe est constituée d'un tube en quartz contenant du mercure est placé à l'intérieur d'une ampoule en


verre dont les parois sont recouvertes d'une poudre fluorescente. L'atmosphère à l'intérieur est un gaz neutre. Elles nécessitent **un appareillage spécial.**

- La durée de mise en régime est de 10 minutes pour 80% du flux nominal.
- Le temps de mise en régime est de 3 à 5 minutes.
- La température de couleur varie de 3900 à 4300°K et l'indice de rendu de couleur de 33 à 49.
- Utilisation: Ateliers, halls, jardins, stations-services ...

Les lampes à vapeur de sodium à basse pression

Cette lampe à décharge est composée d'un tube en U dans lequel se trouvent du sodium à basse pression avec du néon pour faciliter le démarrage.

- La lumière émise est de couleur jaune orangée.
- L'efficacité lumineuse de ces lampes est très élevée, jusqu'à 210 lm/W
- La durée de mise en régime est de 5 à 10 minutes.
- Utilisation : l'éclairage routier, domaine dans lequel leur efficacité très élevée est un avantage considérable.

Les lampes à vapeur de sodium à haute pression

Le tube est en céramique translucide, le verre et le quartz ne pouvant pas résister à la forte corrosion de la vapeur de sodium portée dans ces lampes à plus de 1000°C.

La lumière n'est pas monochromatique car d'autres raies, de longueurs d'onde différentes, du sodium sont émises. Elle se rapproche d'une lumière très chaude.

- L'intensité du courant d'amorçage est supérieure de 50% au courant de marche. Le temps de mise en régime est de 10 minutes.
- La gamme de puissance est étendue, de 50W à 1kW.
- Leurs efficacités lumineuses vont de 68 à 140 lm/W.
- Utilisation: les parcs de stockage, tunnels souterrains, piscines, gymnases,...

Les lampes à DEL ou LED

Principe

Constituée d'un groupement de diodes électroluminescentes.

Un système d'alimentation intégré permet la conversion d'énergie pour alimenter les diodes en courant continu.

Une diode LED:

Le passage du courant de l'Anode (+) à la cathode (-) crée la luminescence (émission par la matière d'un rayonnement lumineux visible)

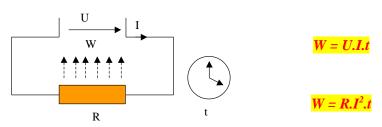
Une diode électroluminescente est une jonction P-N qui doit être polarisée en sens direct lorsqu'on veut émettre de la lumière.

La longueur d'onde du rayonnement émis dépend du matériau utilisé (ex : les diodes à l'arséniure de gallium)

Forme des ampoules

Avantages / Inconvénients

Avantages	Inconvénients
 Très faible consommation électrique; Durée de vie très longue (environ 50000 heures). De très petite taille, elles permettent beaucoup de fantaisie. 	 Encore coûteuses à l'achat pour un groupe de LED Donnant la même lumière qu'une lampe économique. (10 fois plus chères)


Conversion énergie électrique en énergie thermique

Principe

Cette conversion, appelée aussi chauffage, consiste en une transformation de l'énergie électrique en chaleur. Elle est facilement sans combustion, sans fumée ; sa régulation en température est souple et précise.

Rappels d'électrotechnique

La conversion de l'énergie électrique s'effectue, par effet Joule, dans une résistance traversée par un courant électrique

Avec:

- W : énergie [J] - U : Tension [V]

- *I* : *Courant* [*A*]

- t : Temps de passage du courant [s]

- R : résistance $[\Omega]$

Grandeurs en énergie thermique

La correspondance entre l'énergie électrique en joule et l'énergie thermique est donnée par la relation :

La calorie représente la quantité de chaleur nécessaire pour élever de 1°C la température de 1 g d'eau.

Multiples:	Autres unités :
1 kilocalorie [kcal] = 10^3 calories	Le wattheure $1 \text{ Wh} = 3600 \text{ J}$
1 thermie $[th] = 10^6$ calories	Le kilowattheure $1 \text{ kWh} = 10^3 \text{ Wh}$
1 calorie = 1 microthermie [µth]	

Résistance électrique

C'est dans la résistance électrique que s'effectue la transformation de l'énergie électrique en chaleur. Le calcul de la résistance s'effectue, en général, à partir de la puissance à obtenir et de la tension du réseau. A partir des relations : P = U.I et U = R.I. On a donc : $R = U^2/P$ P: Puissance dissipée [W]

 $\mathbf{R} = \rho \frac{L}{s}$

L: longueur du fil [m] s: section du fil [m²]

 ρ : résistivité du fil [Ω m] ou [Ω .mm 2 .m $^{-1}$]

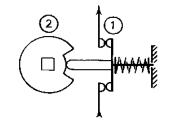
Matériaux résistants.

Le matériau résistant est l'organe actif qui transforme le courant électrique en chaleur.

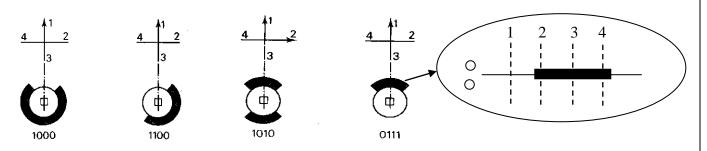
Tableau : Alliage pour résistances électriques

	Caractéristiques types			Observations
Composition type	Résistivité μΩ-cm à 15°C	Température limite d'emploi (°C)	Coefficient de thermo-résistivité x 10 ⁻³	et principaux emplois
Ni 80-Cr 20	109	1 200	0,015	Fours de traitement - Chauffage aux températures élevées - Appareils ménagers – Résistances de mesure - Radiateurs lumineux
Ni 45-Cr 25 Fe solde	112	1 150	0,12	Fours de traitement (résistances spécialement étudiées pour les atmosphères réductrices, carburantes ou faiblement sulfureuses) - Shunts Radiateurs- Bougies d'allumage
Ni 30-Cr 20 Fe solde	104	1 100	0,27	Chauffage à température moyenne

Diamètre des fils normalisés :


0.14- 0.16- 0.18- 0.20- 0.224- 0.250- 0.280- 0.315- 0.355- 0.400 - 0.450 - 0.500 - 0.560 - 0.630 - 0.710 - 0.800 - 0.900 - 1.00 - 1.12 - 1.25- 1.40- 1.60- 1.80- 2.00- 2.24- 2.50- 2.80- 3.15- 3.55- 4.00.

Commande des appareils de chauffage


Schémas des commutateurs

Les commutateurs rotatifs permettent de commander plusieurs circuits selon un ordre prédéterminé. Ils sont constitués essentiellement par :

- Des contacts (1), en général, 2 par étage de commutation ; ces contacts sont indépendants. Le nombre de contacts nécessaires dans un schéma détermine le nombre d'étages du commutateur (2 par étage).
- Des cames (2) qui réalisent le programme de fonctionnement des contacts selon les conditions imposées par l'utilisation des circuits ; 1 came par contact

Selon le programme de fonctionnement on a 4 types de cames :

Couplage de résistances

On couple deux résistances R1 et R2 de 1000W- 230V chacune pour obtenir 3 allures de chauffe :

- position 1 : arrêt;
- position 2 (allure 1) : R1 et R2 série ;
- position 3 (allure 2): R1 seule;
- position 4 (allure 3) : R1 et R2 parallèle.

Calcul de puissance de chauffe

Calcul de la valeur ohmique des résistances R1 et R2 :

$$R1 = R2 = U^2/P = 230^2/1000 = 52.9 \Omega$$
.

Compléter le tableau ci-dessous :

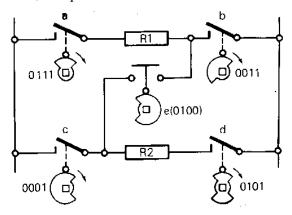
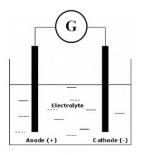

Position	Groupement des résistances	Résistance équivalente du groupement	Puissance de chauffe (W)
1	Aucun	_	0
2	R1 et R2 en série	$R1+R2 = 2x 52,9 = 105,8 \Omega$	500
3	R1 seule	$R1 = 52,9 \Omega$	1000
4	R1 et R2 en parallèle	$R1/2=26,45~\Omega$	2000

Tableau de commutation

Soit un commutateur à quatre positions qui réalise les trois allures, compléter le tableau ci-dessous :

Contacts Positions	а	b	С	d	e
1	0	0	0	0	0
2 (allure 1)	1	0	0	1	1
3 (allure 2)	1	1	0	0	0
4 (all re 3)	1	1	1	1	0


réaction a lieu dans une solution : l'électrolyte.

3 Conversion énergie électrique en énergie chimique

<u>Définition et principe</u> Cette conversion, appelée aussi <mark>électrolyse</mark>, est un processus d'échange au cours duquel l'énergie électrique est transformée en énergie chimique. La

Les ions doivent pouvoir circuler librement dans l'électrolyte pour passer d'une électrode à l'autre. Les deux électrodes sont reliées par l'électrolyte et par un générateur de courant électrique.

Applications

Une application très courante de l'électrolyse est la recharge de l'accumulateur.

Un accumulateur est capable de fonctionner en pile (décharge) ou en électrolyseur (charge). Dans un accumulateur, les réactions aux électrodes sont inversables : les réactions traduisant la charge et la décharge sont inverses l'une de l'autre.

Lors de certaines électrolyses, un dépôt métallique peut se former sur une électrode. Ce phénomène est utilisé dans l'industrie pour : la purification de métaux (l'électroraffinage du cuivre), le revêtement métallique d'objets pour les protéger de la corrosion ou les décorer (la galvanostégie), la reproduction d'objets comme les CD (La galvanoplastie) ...